Standard

Morava K-theory of orthogonal groups and motives of projective quadrics. / Петров, Виктор Александрович; Лавренов, Андрей Валентинович; Sechin, Pavel; Geldhauser, Nikita.

в: Advances in Mathematics, Том 446, 109657, 01.06.2024.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Петров, ВА, Лавренов, АВ, Sechin, P & Geldhauser, N 2024, 'Morava K-theory of orthogonal groups and motives of projective quadrics', Advances in Mathematics, Том. 446, 109657. https://doi.org/10.1016/j.aim.2024.109657

APA

Петров, В. А., Лавренов, А. В., Sechin, P., & Geldhauser, N. (2024). Morava K-theory of orthogonal groups and motives of projective quadrics. Advances in Mathematics, 446, [109657]. https://doi.org/10.1016/j.aim.2024.109657

Vancouver

Петров ВА, Лавренов АВ, Sechin P, Geldhauser N. Morava K-theory of orthogonal groups and motives of projective quadrics. Advances in Mathematics. 2024 Июнь 1;446. 109657. https://doi.org/10.1016/j.aim.2024.109657

Author

Петров, Виктор Александрович ; Лавренов, Андрей Валентинович ; Sechin, Pavel ; Geldhauser, Nikita. / Morava K-theory of orthogonal groups and motives of projective quadrics. в: Advances in Mathematics. 2024 ; Том 446.

BibTeX

@article{1c1749999f0b427dab6264e84640e28a,
title = "Morava K-theory of orthogonal groups and motives of projective quadrics",
abstract = "We compute the algebraic Morava K-theory ring of split special orthogonal and spin groups. In particular, we establish certain stabilization results for the Morava K-theory of special orthogonal and spin groups. Besides, we apply these results to study Morava motivic decompositions of orthogonal Grassmannians. For instance, we determine all indecomposable summands of the Morava motives of a generic quadric.",
keywords = "Algebraic Morava K-theory, Linear algebraic groups, Motives, Oriented cohomology theories, Twisted flag varieties",
author = "Петров, {Виктор Александрович} and Лавренов, {Андрей Валентинович} and Pavel Sechin and Nikita Geldhauser",
year = "2024",
month = jun,
day = "1",
doi = "10.1016/j.aim.2024.109657",
language = "English",
volume = "446",
journal = "Advances in Mathematics",
issn = "0001-8708",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Morava K-theory of orthogonal groups and motives of projective quadrics

AU - Петров, Виктор Александрович

AU - Лавренов, Андрей Валентинович

AU - Sechin, Pavel

AU - Geldhauser, Nikita

PY - 2024/6/1

Y1 - 2024/6/1

N2 - We compute the algebraic Morava K-theory ring of split special orthogonal and spin groups. In particular, we establish certain stabilization results for the Morava K-theory of special orthogonal and spin groups. Besides, we apply these results to study Morava motivic decompositions of orthogonal Grassmannians. For instance, we determine all indecomposable summands of the Morava motives of a generic quadric.

AB - We compute the algebraic Morava K-theory ring of split special orthogonal and spin groups. In particular, we establish certain stabilization results for the Morava K-theory of special orthogonal and spin groups. Besides, we apply these results to study Morava motivic decompositions of orthogonal Grassmannians. For instance, we determine all indecomposable summands of the Morava motives of a generic quadric.

KW - Algebraic Morava K-theory

KW - Linear algebraic groups

KW - Motives

KW - Oriented cohomology theories

KW - Twisted flag varieties

UR - https://www.mendeley.com/catalogue/59bbdbad-5a77-3a77-941c-5f0dad05a9d0/

U2 - 10.1016/j.aim.2024.109657

DO - 10.1016/j.aim.2024.109657

M3 - Article

VL - 446

JO - Advances in Mathematics

JF - Advances in Mathematics

SN - 0001-8708

M1 - 109657

ER -

ID: 120140276