Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Morava K-theory of orthogonal groups and motives of projective quadrics. / Петров, Виктор Александрович; Лавренов, Андрей Валентинович; Sechin, Pavel; Geldhauser, Nikita.
в: Advances in Mathematics, Том 446, 109657, 01.06.2024.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Morava K-theory of orthogonal groups and motives of projective quadrics
AU - Петров, Виктор Александрович
AU - Лавренов, Андрей Валентинович
AU - Sechin, Pavel
AU - Geldhauser, Nikita
PY - 2024/6/1
Y1 - 2024/6/1
N2 - We compute the algebraic Morava K-theory ring of split special orthogonal and spin groups. In particular, we establish certain stabilization results for the Morava K-theory of special orthogonal and spin groups. Besides, we apply these results to study Morava motivic decompositions of orthogonal Grassmannians. For instance, we determine all indecomposable summands of the Morava motives of a generic quadric.
AB - We compute the algebraic Morava K-theory ring of split special orthogonal and spin groups. In particular, we establish certain stabilization results for the Morava K-theory of special orthogonal and spin groups. Besides, we apply these results to study Morava motivic decompositions of orthogonal Grassmannians. For instance, we determine all indecomposable summands of the Morava motives of a generic quadric.
KW - Algebraic Morava K-theory
KW - Linear algebraic groups
KW - Motives
KW - Oriented cohomology theories
KW - Twisted flag varieties
UR - https://www.mendeley.com/catalogue/59bbdbad-5a77-3a77-941c-5f0dad05a9d0/
U2 - 10.1016/j.aim.2024.109657
DO - 10.1016/j.aim.2024.109657
M3 - Article
VL - 446
JO - Advances in Mathematics
JF - Advances in Mathematics
SN - 0001-8708
M1 - 109657
ER -
ID: 120140276