Standard

Modified Steklov Functions and Numerical Differentiation Formulas. / Babushkin, M.V.; Dodonov, N.Yu.; Zhuk, V.V.

в: Journal of Mathematical Sciences, Том 235, № 2, 2018, стр. 138-153.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Babushkin, M.V. ; Dodonov, N.Yu. ; Zhuk, V.V. / Modified Steklov Functions and Numerical Differentiation Formulas. в: Journal of Mathematical Sciences. 2018 ; Том 235, № 2. стр. 138-153.

BibTeX

@article{10752cfbbdd1468fadb2d7a04639d9f8,
title = "Modified Steklov Functions and Numerical Differentiation Formulas",
abstract = "We consider an approximation method based on Steklov functions of the first and second order. We obtain estimates for the norms in the space C of continuous periodic functions and clarify how they connect with numerical differentiation formulas.",
author = "M.V. Babushkin and N.Yu. Dodonov and V.V. Zhuk",
note = "Babushkin, M.V., Dodonov, N.Y. & Zhuk, V.V. Modified Steklov Functions and Numerical Differentiation Formulas. J Math Sci 235, 138–153 (2018). https://doi.org/10.1007/s10958-018-4064-x",
year = "2018",
doi = "10.1007/s10958-018-4064-x",
language = "English",
volume = "235",
pages = "138--153",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - Modified Steklov Functions and Numerical Differentiation Formulas

AU - Babushkin, M.V.

AU - Dodonov, N.Yu.

AU - Zhuk, V.V.

N1 - Babushkin, M.V., Dodonov, N.Y. & Zhuk, V.V. Modified Steklov Functions and Numerical Differentiation Formulas. J Math Sci 235, 138–153 (2018). https://doi.org/10.1007/s10958-018-4064-x

PY - 2018

Y1 - 2018

N2 - We consider an approximation method based on Steklov functions of the first and second order. We obtain estimates for the norms in the space C of continuous periodic functions and clarify how they connect with numerical differentiation formulas.

AB - We consider an approximation method based on Steklov functions of the first and second order. We obtain estimates for the norms in the space C of continuous periodic functions and clarify how they connect with numerical differentiation formulas.

UR - http://www.scopus.com/inward/record.url?scp=85054327593&partnerID=8YFLogxK

U2 - 10.1007/s10958-018-4064-x

DO - 10.1007/s10958-018-4064-x

M3 - Article

VL - 235

SP - 138

EP - 153

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 2

ER -

ID: 35265756