Standard

Model Variational Phase Transition Problem in Continuum Mechanics. / Осмоловский, Виктор Георгиевич.

в: Journal of Mathematical Sciences (United States), Том 255, № 4, 06.2021, стр. 473-487.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Осмоловский, ВГ 2021, 'Model Variational Phase Transition Problem in Continuum Mechanics.', Journal of Mathematical Sciences (United States), Том. 255, № 4, стр. 473-487. https://doi.org/10.1007/s10958-021-05386-3

APA

Vancouver

Author

Осмоловский, Виктор Георгиевич. / Model Variational Phase Transition Problem in Continuum Mechanics. в: Journal of Mathematical Sciences (United States). 2021 ; Том 255, № 4. стр. 473-487.

BibTeX

@article{abdedd7ad51c4004929da872b2f5f9fe,
title = "Model Variational Phase Transition Problem in Continuum Mechanics.",
abstract = "We formulate and study the model variational problem describing phase transitions in two-phase media. Based on this study, we obtain an information about properties of solutions to the problem on equilibrium of a two-phase medium in the traditional statement.",
author = "Осмоловский, {Виктор Георгиевич}",
year = "2021",
month = jun,
doi = "10.1007/s10958-021-05386-3",
language = "English",
volume = "255",
pages = "473--487",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - Model Variational Phase Transition Problem in Continuum Mechanics.

AU - Осмоловский, Виктор Георгиевич

PY - 2021/6

Y1 - 2021/6

N2 - We formulate and study the model variational problem describing phase transitions in two-phase media. Based on this study, we obtain an information about properties of solutions to the problem on equilibrium of a two-phase medium in the traditional statement.

AB - We formulate and study the model variational problem describing phase transitions in two-phase media. Based on this study, we obtain an information about properties of solutions to the problem on equilibrium of a two-phase medium in the traditional statement.

UR - http://www.scopus.com/inward/record.url?scp=85105534772&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/6f437860-79e9-3e14-a941-81c4bb19b426/

U2 - 10.1007/s10958-021-05386-3

DO - 10.1007/s10958-021-05386-3

M3 - Article

VL - 255

SP - 473

EP - 487

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 76772826