Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
Minimum Tracking with SPSA and Applications to Image Registration. / Granichin, O.; Gurevich, L.; Vakhitov, A.
NESTER 2009: NETWORKED EMBEDDED AND CONTROL SYSTEM TECHNOLOGIES: EUROPEAN AND RUSSIAN R&D COOPERATION, PROCEEDINGS. ред. / A Pascoal; Ufnarovsky. Institute for Systems and Technologies of Information, Control and Communication, 2009. стр. 66-74.Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
}
TY - GEN
T1 - Minimum Tracking with SPSA and Applications to Image Registration
AU - Granichin, O.
AU - Gurevich, L.
AU - Vakhitov, A.
PY - 2009
Y1 - 2009
N2 - An application of simultaneous perturbation stochastic approximation (SPSA) algorithm with two measurements per iteration to the problem of object tracking on video is discussed. The upper bound of mean square estimation error is determined in case of once differentiable functional and almost arbitrary noises. Weak restrictions on uncertainty allow to use random sampling instead of full pixelwise difference calculation. The experiments show significant increase in performance of object tracking comparing to the classical Lucas-Kanade algorithm. The results can be generalized to improve more recent kernel-based tracking methods.
AB - An application of simultaneous perturbation stochastic approximation (SPSA) algorithm with two measurements per iteration to the problem of object tracking on video is discussed. The upper bound of mean square estimation error is determined in case of once differentiable functional and almost arbitrary noises. Weak restrictions on uncertainty allow to use random sampling instead of full pixelwise difference calculation. The experiments show significant increase in performance of object tracking comparing to the classical Lucas-Kanade algorithm. The results can be generalized to improve more recent kernel-based tracking methods.
KW - STOCHASTIC-APPROXIMATION
KW - ALGORITHM
KW - PERTURBATION
M3 - статья в сборнике материалов конференции
SN - 978-989-674-004-7
SP - 66
EP - 74
BT - NESTER 2009: NETWORKED EMBEDDED AND CONTROL SYSTEM TECHNOLOGIES: EUROPEAN AND RUSSIAN R&D COOPERATION, PROCEEDINGS
A2 - Pascoal, A
A2 - Ufnarovsky, null
PB - Institute for Systems and Technologies of Information, Control and Communication
Y2 - 4 July 2009 through 5 July 2009
ER -
ID: 4405009