Standard

Minimax estimation in a deconvolution problem. / Ermakov, M. S.

в: Journal of Physics A: Mathematical and General, Том 25, № 5, 030, 1992, стр. 1273-1281.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Ermakov, MS 1992, 'Minimax estimation in a deconvolution problem', Journal of Physics A: Mathematical and General, Том. 25, № 5, 030, стр. 1273-1281. https://doi.org/10.1088/0305-4470/25/5/030

APA

Ermakov, M. S. (1992). Minimax estimation in a deconvolution problem. Journal of Physics A: Mathematical and General, 25(5), 1273-1281. [030]. https://doi.org/10.1088/0305-4470/25/5/030

Vancouver

Ermakov MS. Minimax estimation in a deconvolution problem. Journal of Physics A: Mathematical and General. 1992;25(5):1273-1281. 030. https://doi.org/10.1088/0305-4470/25/5/030

Author

Ermakov, M. S. / Minimax estimation in a deconvolution problem. в: Journal of Physics A: Mathematical and General. 1992 ; Том 25, № 5. стр. 1273-1281.

BibTeX

@article{8ceea559fff149d8bd96a497da813300,
title = "Minimax estimation in a deconvolution problem",
abstract = "Considers a convolution equation with the right-hand side known with a radom noise. A priori information that the solution belongs to an ellipsoid in hilbert space is given. The author constructs the minimax estimators of the convolution of the solution with a generalized function h. As an example the estimation problem of the derivative of the solution is studied.",
author = "Ermakov, {M. S.}",
note = "Copyright: Copyright 2007 Elsevier B.V., All rights reserved.",
year = "1992",
doi = "10.1088/0305-4470/25/5/030",
language = "English",
volume = "25",
pages = "1273--1281",
journal = "Journal of Physics A: Mathematical and Theoretical",
issn = "1751-8113",
publisher = "IOP Publishing Ltd.",
number = "5",

}

RIS

TY - JOUR

T1 - Minimax estimation in a deconvolution problem

AU - Ermakov, M. S.

N1 - Copyright: Copyright 2007 Elsevier B.V., All rights reserved.

PY - 1992

Y1 - 1992

N2 - Considers a convolution equation with the right-hand side known with a radom noise. A priori information that the solution belongs to an ellipsoid in hilbert space is given. The author constructs the minimax estimators of the convolution of the solution with a generalized function h. As an example the estimation problem of the derivative of the solution is studied.

AB - Considers a convolution equation with the right-hand side known with a radom noise. A priori information that the solution belongs to an ellipsoid in hilbert space is given. The author constructs the minimax estimators of the convolution of the solution with a generalized function h. As an example the estimation problem of the derivative of the solution is studied.

UR - http://www.scopus.com/inward/record.url?scp=0006530607&partnerID=8YFLogxK

U2 - 10.1088/0305-4470/25/5/030

DO - 10.1088/0305-4470/25/5/030

M3 - Article

AN - SCOPUS:0006530607

VL - 25

SP - 1273

EP - 1281

JO - Journal of Physics A: Mathematical and Theoretical

JF - Journal of Physics A: Mathematical and Theoretical

SN - 1751-8113

IS - 5

M1 - 030

ER -

ID: 71601474