DOI

The graph complexity of a compact 3-manifold is defined as the minimum order among all 4-colored graphs representing it. Exact calculations of graph complexity have been already performed, through tabulations, for closed orientable manifolds (up to graph complexity 32) and for compact orientable 3-manifolds with toric boundary (up to graph complexity 12) and for infinite families of lens spaces. In this paper we extend to graph complexity 14 the computations for orientable manifolds with toric boundary and we give two-sided bounds for the graph complexity of tetrahedral manifolds. As a consequence, we compute the exact value of this invariant for an infinite family of such manifolds.

Язык оригиналаанглийский
Страницы (с-по)781-792
ЖурналRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas
Том112
Номер выпуска3
DOI
СостояниеОпубликовано - 1 июл 2018
Опубликовано для внешнего пользованияДа

    Предметные области Scopus

  • Анализ
  • Алгебра и теория чисел
  • Геометрия и топология
  • Вычислительная математика
  • Прикладная математика

ID: 40112783