Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Let Td:L2([0, 1]d)→C([0, 1]d) be the d-dimensional integration operator. We show that its Kolmogorov and entropy numbers decrease with order at least k-1(logk)d-1/2. From this we derive that the small ball probabilities of the Brownian sheet on [0, 1]d under the C([0, 1]d)-norm can be estimated from below by exp(-Cε-2logε2d-1), which improves the best known lower bounds considerably. We also get similar results with respect to certain Orlicz norms.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 63-77 |
Число страниц | 15 |
Журнал | Journal of Approximation Theory |
Том | 101 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - 1 ноя 1999 |
ID: 37011736