DOI

Let Td:L2([0, 1]d)→C([0, 1]d) be the d-dimensional integration operator. We show that its Kolmogorov and entropy numbers decrease with order at least k-1(logk)d-1/2. From this we derive that the small ball probabilities of the Brownian sheet on [0, 1]d under the C([0, 1]d)-norm can be estimated from below by exp(-Cε-2logε2d-1), which improves the best known lower bounds considerably. We also get similar results with respect to certain Orlicz norms.

Язык оригиналаанглийский
Страницы (с-по)63-77
Число страниц15
ЖурналJournal of Approximation Theory
Том101
Номер выпуска1
DOI
СостояниеОпубликовано - 1 ноя 1999

    Предметные области Scopus

  • Анализ
  • Численный анализ
  • Математика (все)
  • Прикладная математика

ID: 37011736