DOI

Motivation: Although the set of currently known viruses has been steadily expanding, only a tiny fraction of the Earth's virome has been sequenced so far. Shotgun metagenomic sequencing provides an opportunity to reveal novel viruses but faces the computational challenge of identifying viral genomes that are often difficult to detect in metagenomic assemblies.

Results: We describe a METAVIRALSPADES tool for identifying viral genomes in metagenomic assembly graphs that is based on analyzing variations in the coverage depth between viruses and bacterial chromosomes. We benchmarked METAVIRALSPADES on diverse metagenomic datasets, verified our predictions using a set of virus-specific Hidden Markov Models and demonstrated that it improves on the state-of-the-art viral identification pipelines.

Язык оригиналаанглийский
Страницы (с-по)4126-4129
Число страниц4
ЖурналBioinformatics
Том36
Номер выпуска14
Дата раннего онлайн-доступа15 мая 2020
DOI
СостояниеОпубликовано - 15 июл 2020

    Предметные области Scopus

  • Теория вероятности и статистика
  • Биохимия
  • Молекулярная биология
  • Прикладные компьютерные науки
  • Математика и теория расчета
  • Вычислительная математика

ID: 60527501