The model of bulk-synchronous parallel (BSP) computation is an emerging paradigm of general-purpose parallel computing. Its modification, the BSPRAM model, allows one to combine the advantages of distributed and shared-memory style programming. In this paper we study the BSP memory complexity of matrix multiplication. We propose new memory-efficient BSP algorithms both for standard and for fast matrix multiplication. The BSPRAM model is used to simplify the description of the algorithms. The communication and synchronization complexity of our algorithms is slightly higher than that of known time-efficient BSP algorithms. The current time-efficient and new memory-efficient algorithms are connected by a continuous tradeoff. © 1999 Springer-Verkg New York Inc.