Structural features of stomatal complexes influencing the mechanical advantage of subsidiary cells were studied. Light, scanning and transmission electron microscopy were used to research the morphology of Fagraea ceilanica stomatal complexes. Their guard cells are located on subsidiary cells. The walls of the subsidiary cells are thickened unevenly. The inner tangential walls are thin and most extensive as compared to other walls of these cells. The data obtained allowed a 3D model of F. ceilanica stomatal complex to be constructed. To elucidate the interaction between the guard and subsidiary cells during stomatal movements, we have applied modelling using the finite-element method. According to the modelling results, the mechanical advantage of the subsidiary cells depends on mutual location of the guard and subsidiary cells, uneven thickening, area and rigidity of the subsidiary cell walls and presence of substomatal chambers, into which the inner tangential walls of the subsidiary cells can bulge when turgor pressure in these cells increases. The modelling results were confirmed by the observed deformations in actual stomatal complex cells of F. ceilanica. The decrease in mechanical advantage of the subsidiary cells ensures stoma opening in the conditions of excessive saturation of the epidermis with water, for example, in the conditions of tropical rainforests.