Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Mathematical Scattering Theory in Quantum and Acoustic Waveguides. / Plamenevskii, B. A.; Poretskii, A. S.; Sarafanov, O. V.
в: Journal of Mathematical Sciences (United States), Том 262, № 3, 05.05.2022, стр. 329-357.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Mathematical Scattering Theory in Quantum and Acoustic Waveguides
AU - Plamenevskii, B. A.
AU - Poretskii, A. S.
AU - Sarafanov, O. V.
N1 - Publisher Copyright: © 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
PY - 2022/5/5
Y1 - 2022/5/5
N2 - We consider a waveguide that occupies a domain G with several cylindrical ends and is descried by the nonstationary equation [InlineMediaObject not available: see fulltext.] where [InlineMediaObject not available: see fulltext.] is a selfadjoint second order elliptic operator with variable coefficients. For the boundary condition we consider the Dirichlet, Neumann, or Robin ones. For the stationary problem with parameter we describe eigenfunctions of the continuous spectrum and a scattering matrix. Based on the limiting absorption principle, we obtain an expansion in eigenfunctions of the continuous spectrum. We compute wave operators and prove their completeness. We define a scattering operator and describe its connection with the scattering matrix. As a consequence, we construct scattering theory for the wave equation [InlineMediaObject not available: see fulltext.].
AB - We consider a waveguide that occupies a domain G with several cylindrical ends and is descried by the nonstationary equation [InlineMediaObject not available: see fulltext.] where [InlineMediaObject not available: see fulltext.] is a selfadjoint second order elliptic operator with variable coefficients. For the boundary condition we consider the Dirichlet, Neumann, or Robin ones. For the stationary problem with parameter we describe eigenfunctions of the continuous spectrum and a scattering matrix. Based on the limiting absorption principle, we obtain an expansion in eigenfunctions of the continuous spectrum. We compute wave operators and prove their completeness. We define a scattering operator and describe its connection with the scattering matrix. As a consequence, we construct scattering theory for the wave equation [InlineMediaObject not available: see fulltext.].
UR - http://www.scopus.com/inward/record.url?scp=85129241769&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/138c307e-d9fb-35a3-8e0f-0f1c59d25aa6/
U2 - 10.1007/s10958-022-05820-0
DO - 10.1007/s10958-022-05820-0
M3 - Article
AN - SCOPUS:85129241769
VL - 262
SP - 329
EP - 357
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 3
ER -
ID: 100852292