Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Mathematical modeling of triode system on the basis of field emitter with ellipsoid shape. / Egorov, N. V.; Vinogradova, E. M.
в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Том 17, № 2, 2021, стр. 131-136.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Mathematical modeling of triode system on the basis of field emitter with ellipsoid shape
AU - Egorov, N. V.
AU - Vinogradova, E. M.
N1 - Publisher Copyright: © St. Petersburg State University, 2021.
PY - 2021
Y1 - 2021
N2 - In this paper the mathematical modeling of the triode emission axially symmetric system on the basis of field emitter is considered. Emitter is an ellipsoid of revolution, anode is a confocal ellipsoidal surface of revolution. Modulator is a part of the ellipsoidal surface of revolution, confocal with the cathode and anode surfaces. The boundary-value problem for the Laplace's equation in the prolate spheroidal coordinates with the boundary conditions of the first kind is solved. The variable separation method is applied to calculate the axisymmetrical electrostatic potential distribution. The potential distribution is represented as the Legendre functions expansion. The expansion coefficients are the solution of the system of linear equations. All geometrical dimensions of the system are the parameters of the problem.
AB - In this paper the mathematical modeling of the triode emission axially symmetric system on the basis of field emitter is considered. Emitter is an ellipsoid of revolution, anode is a confocal ellipsoidal surface of revolution. Modulator is a part of the ellipsoidal surface of revolution, confocal with the cathode and anode surfaces. The boundary-value problem for the Laplace's equation in the prolate spheroidal coordinates with the boundary conditions of the first kind is solved. The variable separation method is applied to calculate the axisymmetrical electrostatic potential distribution. The potential distribution is represented as the Legendre functions expansion. The expansion coefficients are the solution of the system of linear equations. All geometrical dimensions of the system are the parameters of the problem.
KW - Boundary-value problem
KW - Electrostatic potential
KW - Field emission
KW - Field emitter
KW - Legendre functions
KW - Mathematical modeling
KW - Micro- and nanoelectronics
KW - electrostatic potential
KW - field emission
KW - boundary-value problem
KW - micro- and nanoelectronics
KW - field emitter
KW - mathematical modeling
UR - http://www.scopus.com/inward/record.url?scp=85111963203&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/efc6ec2a-0ccd-3009-b6b7-bfd93a597a3d/
U2 - 10.21638/11701/SPBU10.2021.203
DO - 10.21638/11701/SPBU10.2021.203
M3 - Article
AN - SCOPUS:85111963203
VL - 17
SP - 131
EP - 136
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
SN - 1811-9905
IS - 2
ER -
ID: 85154618