DOI

Let B be a meromorphic Blaschke product in the upper half-plane with zeros Zn and let KB - H2 ⊖ BH2 be the associated model subspace of the Hardy space H2. A nonnegative function w on the real line is said to be an admissible majorant for K B if there is a non-zero function f ∈ KB such that |f| ≤ w a.e. on ℝ. We study the relations between the distribution of the zeros of a Blaschke product B and the class of admissible majorants for the space KB.

Язык оригиналаанглийский
Страницы (с-по)1595-1628
Число страниц34
ЖурналIndiana University Mathematics Journal
Том56
Номер выпуска4
DOI
СостояниеОпубликовано - 30 окт 2007

    Предметные области Scopus

  • Математика (все)

ID: 32722185