Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Magnetic properties of metal–organic coordination networks based on 3d transition metal atoms. / Blanco-Rey, Maria; Sarasola, Ane; Nistor, Corneliu; Persichetti, Luca; Stamm, Christian; Piamonteze, Cinthia; Gambardella, Pietro; Stepanow, Sebastian; Otrokov, Mikhail M.; Golovach, Vitaly N.; Arnau, Andres.
в: Molecules, Том 23, № 4, 964, 20.04.2018.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Magnetic properties of metal–organic coordination networks based on 3d transition metal atoms
AU - Blanco-Rey, Maria
AU - Sarasola, Ane
AU - Nistor, Corneliu
AU - Persichetti, Luca
AU - Stamm, Christian
AU - Piamonteze, Cinthia
AU - Gambardella, Pietro
AU - Stepanow, Sebastian
AU - Otrokov, Mikhail M.
AU - Golovach, Vitaly N.
AU - Arnau, Andres
PY - 2018/4/20
Y1 - 2018/4/20
N2 - The magnetic anisotropy and exchange coupling between spins localized at the positions of 3d transition metal atoms forming two-dimensional metal–organic coordination networks (MOCNs) grown on a Au(111) metal surface are studied. In particular, we consider MOCNs made of Ni or Mn metal centers linked by 7,7,8,8-tetracyanoquinodimethane (TCNQ) organic ligands, which form rectangular networks with 1:1 stoichiometry. Based on the analysis of X-ray magnetic circular dichroism (XMCD) data taken at T = 2.5 K, we find that Ni atoms in the Ni–TCNQ MOCNs are coupled ferromagnetically and do not show any significant magnetic anisotropy, while Mn atoms in the Mn–TCNQ MOCNs are coupled antiferromagnetically and do show a weak magnetic anisotropy with in-plane magnetization. We explain these observations using both a model Hamiltonian based on mean-field Weiss theory and density functional theory calculations that include spin–orbit coupling. Our main conclusion is that the antiferromagnetic coupling between Mn spins and the in-plane magnetization of the Mn spins can be explained by neglecting effects due to the presence of the Au(111) surface, while for Ni–TCNQ the metal surface plays a role in determining the absence of magnetic anisotropy in the system.
AB - The magnetic anisotropy and exchange coupling between spins localized at the positions of 3d transition metal atoms forming two-dimensional metal–organic coordination networks (MOCNs) grown on a Au(111) metal surface are studied. In particular, we consider MOCNs made of Ni or Mn metal centers linked by 7,7,8,8-tetracyanoquinodimethane (TCNQ) organic ligands, which form rectangular networks with 1:1 stoichiometry. Based on the analysis of X-ray magnetic circular dichroism (XMCD) data taken at T = 2.5 K, we find that Ni atoms in the Ni–TCNQ MOCNs are coupled ferromagnetically and do not show any significant magnetic anisotropy, while Mn atoms in the Mn–TCNQ MOCNs are coupled antiferromagnetically and do show a weak magnetic anisotropy with in-plane magnetization. We explain these observations using both a model Hamiltonian based on mean-field Weiss theory and density functional theory calculations that include spin–orbit coupling. Our main conclusion is that the antiferromagnetic coupling between Mn spins and the in-plane magnetization of the Mn spins can be explained by neglecting effects due to the presence of the Au(111) surface, while for Ni–TCNQ the metal surface plays a role in determining the absence of magnetic anisotropy in the system.
KW - Density functional theory
KW - Magnetism
KW - Metal–organic network
KW - X-ray magnetic circular dichroism (XMCD)
KW - metal-organic network
KW - magnetism
KW - TOTAL-ENERGY CALCULATIONS
KW - MONOLAYERS
KW - BRILLOUIN-ZONE INTEGRATIONS
KW - MICROSCOPIC ORIGIN
KW - INTERFACE
KW - DICHROISM
KW - density functional theory
KW - SYSTEMS
KW - MAGNETOCRYSTALLINE ANISOTROPY
KW - CHARGE-TRANSFER
KW - WAVE BASIS-SET
UR - http://www.scopus.com/inward/record.url?scp=85045954934&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/magnetic-properties-metalorganic-coordination-networks-based-3d-transition-metal-atoms
U2 - 10.3390/molecules23040964
DO - 10.3390/molecules23040964
M3 - Article
C2 - 29677142
AN - SCOPUS:85045954934
VL - 23
JO - Molecules
JF - Molecules
SN - 1420-3049
IS - 4
M1 - 964
ER -
ID: 36604946