Standard

Magnetic control of polariton spin transport. / Caputo, Davide; Sedov, Evgeny S.; Ballarini, D.; Глазов, Михаил Михайлович; Кавокин, Алексей Витальевич; Sanvitto, D.

в: Communications Physics, Том 2, № 1, 165, 01.12.2019.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Caputo, D, Sedov, ES, Ballarini, D, Глазов, ММ, Кавокин, АВ & Sanvitto, D 2019, 'Magnetic control of polariton spin transport', Communications Physics, Том. 2, № 1, 165. https://doi.org/10.1038/s42005-019-0261-2

APA

Caputo, D., Sedov, E. S., Ballarini, D., Глазов, М. М., Кавокин, А. В., & Sanvitto, D. (2019). Magnetic control of polariton spin transport. Communications Physics, 2(1), [165]. https://doi.org/10.1038/s42005-019-0261-2

Vancouver

Caputo D, Sedov ES, Ballarini D, Глазов ММ, Кавокин АВ, Sanvitto D. Magnetic control of polariton spin transport. Communications Physics. 2019 Дек. 1;2(1). 165. https://doi.org/10.1038/s42005-019-0261-2

Author

Caputo, Davide ; Sedov, Evgeny S. ; Ballarini, D. ; Глазов, Михаил Михайлович ; Кавокин, Алексей Витальевич ; Sanvitto, D. / Magnetic control of polariton spin transport. в: Communications Physics. 2019 ; Том 2, № 1.

BibTeX

@article{3922ebb0d24f4c3f9991ac700fa882e8,
title = "Magnetic control of polariton spin transport",
abstract = "Polaritons are hybrid light–matter quasiparticles arising from the strong coupling of excitons and photons. Owing to the spin degree-of-freedom, polaritons form spinor fluids able to propagate in the cavity plane over long distances with promising properties for spintronics applications. Here we demonstrate experimentally the full control of the polarization dynamics of a propagating exciton–polariton condensate in a planar microcavity by using amagnetic field applied in the Voigt geometry. We show the change of the spin-beat frequency, the suppression of the optical spin Hall effect, and the rotation of the polarization pattern by the magnetic field. The observed effects are theoretically reproduced by a phenomenological model based on microscopic consideration of exciton–photon coupling in a microcavity accounting for the magneto-induced mixing of exciton–polariton and dark, spinforbiddenexciton states.",
author = "Davide Caputo and Sedov, {Evgeny S.} and D. Ballarini and Глазов, {Михаил Михайлович} and Кавокин, {Алексей Витальевич} and D. Sanvitto",
year = "2019",
month = dec,
day = "1",
doi = "10.1038/s42005-019-0261-2",
language = "English",
volume = "2",
journal = "Communications Physics",
issn = "2399-3650",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - Magnetic control of polariton spin transport

AU - Caputo, Davide

AU - Sedov, Evgeny S.

AU - Ballarini, D.

AU - Глазов, Михаил Михайлович

AU - Кавокин, Алексей Витальевич

AU - Sanvitto, D.

PY - 2019/12/1

Y1 - 2019/12/1

N2 - Polaritons are hybrid light–matter quasiparticles arising from the strong coupling of excitons and photons. Owing to the spin degree-of-freedom, polaritons form spinor fluids able to propagate in the cavity plane over long distances with promising properties for spintronics applications. Here we demonstrate experimentally the full control of the polarization dynamics of a propagating exciton–polariton condensate in a planar microcavity by using amagnetic field applied in the Voigt geometry. We show the change of the spin-beat frequency, the suppression of the optical spin Hall effect, and the rotation of the polarization pattern by the magnetic field. The observed effects are theoretically reproduced by a phenomenological model based on microscopic consideration of exciton–photon coupling in a microcavity accounting for the magneto-induced mixing of exciton–polariton and dark, spinforbiddenexciton states.

AB - Polaritons are hybrid light–matter quasiparticles arising from the strong coupling of excitons and photons. Owing to the spin degree-of-freedom, polaritons form spinor fluids able to propagate in the cavity plane over long distances with promising properties for spintronics applications. Here we demonstrate experimentally the full control of the polarization dynamics of a propagating exciton–polariton condensate in a planar microcavity by using amagnetic field applied in the Voigt geometry. We show the change of the spin-beat frequency, the suppression of the optical spin Hall effect, and the rotation of the polarization pattern by the magnetic field. The observed effects are theoretically reproduced by a phenomenological model based on microscopic consideration of exciton–photon coupling in a microcavity accounting for the magneto-induced mixing of exciton–polariton and dark, spinforbiddenexciton states.

UR - http://www.scopus.com/inward/record.url?scp=85076910973&partnerID=8YFLogxK

U2 - 10.1038/s42005-019-0261-2

DO - 10.1038/s42005-019-0261-2

M3 - Article

VL - 2

JO - Communications Physics

JF - Communications Physics

SN - 2399-3650

IS - 1

M1 - 165

ER -

ID: 36181068