In this work, we focus on several completion problems for subclasses of chordal graphs: minimum Fill-In, Interval Completion, Proper Interval Completion, Threshold Completion, and Trivially Perfect Completion. In these problems, the task is to add at most k edges to a given graph in order to obtain a chordal, interval, proper interval, threshold, or trivially perfect graph, respectively. We prove the following lower bounds for all these problems, as well as for the related Chain Completion problem: Assuming the Exponential Time Hypothesis, none of these problems can be solved in time 2σ(n1/2/logcn) or 2σ (kl/4/logck). nσ (1), for some integer c. Assuming the non-existence of a subexponential-time approximation scheme for Min Bisection on d-regular graphs, for some constant d, none of these problems can be solved in time 2°(n) or 2° (√nk). nσ(1). The second result is an evidence, that a significant improvement of the best known algorithms for parameterized completion problems would lead to a surprising breakthrough in the design of approximation algorithms for MlN bisection.

Язык оригиналаанглийский
Название основной публикации27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016
РедакторыRobert Krauthgamer
ИздательAssociation for Computing Machinery
Страницы1132-1151
Число страниц20
ISBN (электронное издание)9781510819672
СостояниеОпубликовано - 1 янв 2016
Событие27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016 - Arlington, Соединенные Штаты Америки
Продолжительность: 10 янв 201612 янв 2016

Серия публикаций

НазваниеProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
Том2

конференция

конференция27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016
Страна/TерриторияСоединенные Штаты Америки
ГородArlington
Период10/01/1612/01/16

    Предметные области Scopus

  • Программный продукт
  • Математика (все)

ID: 49787517