Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
In this work, we focus on several completion problems for subclasses of chordal graphs: minimum Fill-In, Interval Completion, Proper Interval Completion, Threshold Completion, and Trivially Perfect Completion. In these problems, the task is to add at most k edges to a given graph in order to obtain a chordal, interval, proper interval, threshold, or trivially perfect graph, respectively. We prove the following lower bounds for all these problems, as well as for the related Chain Completion problem: Assuming the Exponential Time Hypothesis, none of these problems can be solved in time 2σ(n1/2/logcn) or 2σ (kl/4/logck). nσ (1), for some integer c. Assuming the non-existence of a subexponential-time approximation scheme for Min Bisection on d-regular graphs, for some constant d, none of these problems can be solved in time 2°(n) or 2° (√nk). nσ(1). The second result is an evidence, that a significant improvement of the best known algorithms for parameterized completion problems would lead to a surprising breakthrough in the design of approximation algorithms for MlN bisection.
Язык оригинала | английский |
---|---|
Название основной публикации | 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016 |
Редакторы | Robert Krauthgamer |
Издатель | Association for Computing Machinery |
Страницы | 1132-1151 |
Число страниц | 20 |
ISBN (электронное издание) | 9781510819672 |
Состояние | Опубликовано - 1 янв 2016 |
Событие | 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016 - Arlington, Соединенные Штаты Америки Продолжительность: 10 янв 2016 → 12 янв 2016 |
Название | Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms |
---|---|
Том | 2 |
конференция | 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016 |
---|---|
Страна/Tерритория | Соединенные Штаты Америки |
Город | Arlington |
Период | 10/01/16 → 12/01/16 |
ID: 49787517