We compute the geodesic curvature of logarithmic spirals on surfaces of constant Gaussian curvature. In addition, we show that the asymptotic behavior of the geodesic curvature is independent of the curvature of the ambient surface. We also show that, at a fixed distance from the center of the spiral, the geodesic curvature is continuously differentiable as a function of the Gaussian curvature. © 2024 The Authors.
Язык оригиналаАнглийский
Страницы (с-по)689-708
Число страниц20
ЖурналInvolve
Том17
Номер выпуска4
DOI
СостояниеОпубликовано - 2024

ID: 126462667