We introduce a notion of localization for dyadic functions, i. e. functions defined on Cantor group. Both nonperiodic and periodic cases are discussed. Localization is characterized by functionalsUC_d and UC_{dp} similar to the Heisenberg (the Breitenberger) uncertainty constants used for real-line (periodic) functions. We are looking for dyadic analogs of uncertainty principles. To justify definition we use some test functions including dyadic scaling and wavelet functions.
Язык оригиналаанглийский
Название основной публикации11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013
ИздательSpringer Nature
Страницы711-714
ISBN (печатное издание)978-073541184-5
DOI
СостояниеОпубликовано - 2013

Серия публикаций

НазваниеAIP Coference Proceedings
Том1558

ID: 4660792