DOI

The asymptotics of eigenvalues and eigenfunctions of the Dirichlet problem for the biharmonic operator in a narrow two-dimensional domain (a thin Kirchhoff plate with rigidly clamped edges) as its width tends to zero is studied. The effect of localization of eigenfunctions is described, which consists in their exponential decay when removing away from the most wide plate region. DOI 10.1134/S1061920821020035

Язык оригиналаанглийский
Страницы (с-по)156-178
Число страниц23
ЖурналRussian Journal of Mathematical Physics
Том28
Номер выпуска2
DOI
СостояниеОпубликовано - апр 2021

    Предметные области Scopus

  • Математическая физика

ID: 77948017