Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Limit Theorems in the Problem of Optimal Linear Transformation. / Malozemov, V.N.; Petrov, A.V.
в: Operations Research Forum, Том 7, № 1, 01.03.2026.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Limit Theorems in the Problem of Optimal Linear Transformation
AU - Malozemov, V.N.
AU - Petrov, A.V.
N1 - Export Date: 05 February 2026; Cited By: 0; Correspondence Address: V.N. Malozemov; Saint-Petersburg State University, Saint-Petersburg, University Embankment, 199034, Russian Federation; email: v.malozemov@spbu.ru; A.V. Petrov; Saint-Petersburg State University, Saint-Petersburg, University Embankment, 199034, Russian Federation; email: aleksndr19@rambler.ru
PY - 2026/3/1
Y1 - 2026/3/1
N2 - We consider the following extremal problem: Among all matrices that map a given point x of the Euclidean spaceRnto a given point b of the Euclidean spaceRm, find a matrix of minimal norm. The article uses the Hölder norm of vectors and matrices depending on a parameter p. It is shown that for every p∈(1,+∞) there exists a unique solution of the stated problem and an explicit formula for it is derived. Limits of the optimal matrix are found as p approaches the boundary values p→1 and p→+∞. It is established that the limiting matrices are solutions of the corresponding limiting extremal problems. However, unlike the case p∈(1,+∞), uniqueness of these limiting solutions is not guaranteed. A full description of the entire set of solutions of the nonsmooth limiting problems is given. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
AB - We consider the following extremal problem: Among all matrices that map a given point x of the Euclidean spaceRnto a given point b of the Euclidean spaceRm, find a matrix of minimal norm. The article uses the Hölder norm of vectors and matrices depending on a parameter p. It is shown that for every p∈(1,+∞) there exists a unique solution of the stated problem and an explicit formula for it is derived. Limits of the optimal matrix are found as p approaches the boundary values p→1 and p→+∞. It is established that the limiting matrices are solutions of the corresponding limiting extremal problems. However, unlike the case p∈(1,+∞), uniqueness of these limiting solutions is not guaranteed. A full description of the entire set of solutions of the nonsmooth limiting problems is given. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
KW - Hölder norms
KW - Inverse linear algebra problem
KW - Limit theorems
KW - minimax problems
KW - Minimization of the sum of moduli
UR - https://www.mendeley.com/catalogue/5feebf26-2b71-38e6-97fb-4e5b1ed9ef9c/
U2 - 10.1007/s43069-025-00585-z
DO - 10.1007/s43069-025-00585-z
M3 - статья
VL - 7
JO - Operations Research Forum
JF - Operations Research Forum
SN - 2662-2556
IS - 1
ER -
ID: 148346853