Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Light Scattering by Multilayer Axially Symmetric Particles. / Farafonov, V. G.; Il'in, V. B.; Prokop'eva, M. S.
в: Optics and Spectroscopy (English translation of Optika i Spektroskopiya), Том 93, № 4, 01.10.2002, стр. 603-609.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Light Scattering by Multilayer Axially Symmetric Particles
AU - Farafonov, V. G.
AU - Il'in, V. B.
AU - Prokop'eva, M. S.
PY - 2002/10/1
Y1 - 2002/10/1
N2 - An exact solution to the problem of light scattering by multilayer axially symmetric particles is derived and some aspects of its computer-aided implementation are discussed. The main specific features of the solution are (i) separation of the incident, scattered, and internal fields into two parts and special selection of the scalar potentials for each of them; (ii) expansion of the potentials in terms of spherical wave functions; (iii) formulation of the problem in the form of surface integral equations; and (iv) solution of the reduced systems of the linear algebraic equations for the coefficients of the potential expansions. Mathematical justification of the solution is discussed, which is formulated in the recursive and nonrecursive form (for the T-matrix). The developed computer program has shown that the proposed approach makes it possible to consider axially symmetric particles with essentially different internal structures (i.e., with a spherical core, oblate spheroidal shell, or prolate spheroidal intermediate layer). The results of calculations of the optical properties of the multilayer nonspherical particles are presented and discussed.
AB - An exact solution to the problem of light scattering by multilayer axially symmetric particles is derived and some aspects of its computer-aided implementation are discussed. The main specific features of the solution are (i) separation of the incident, scattered, and internal fields into two parts and special selection of the scalar potentials for each of them; (ii) expansion of the potentials in terms of spherical wave functions; (iii) formulation of the problem in the form of surface integral equations; and (iv) solution of the reduced systems of the linear algebraic equations for the coefficients of the potential expansions. Mathematical justification of the solution is discussed, which is formulated in the recursive and nonrecursive form (for the T-matrix). The developed computer program has shown that the proposed approach makes it possible to consider axially symmetric particles with essentially different internal structures (i.e., with a spherical core, oblate spheroidal shell, or prolate spheroidal intermediate layer). The results of calculations of the optical properties of the multilayer nonspherical particles are presented and discussed.
UR - http://www.scopus.com/inward/record.url?scp=0141560435&partnerID=8YFLogxK
U2 - 10.1134/1.1517087
DO - 10.1134/1.1517087
M3 - Article
AN - SCOPUS:0141560435
VL - 93
SP - 603
EP - 609
JO - OPTICS AND SPECTROSCOPY
JF - OPTICS AND SPECTROSCOPY
SN - 0030-400X
IS - 4
ER -
ID: 34877543