The presented project is intended to make use of growing amounts or textual data in social networks in the Russian language, In order to Hnd Ungulstlc correlates of the Dark Triad personality traits, comprising non-clinical Nareissism, Machiavellianism and Psychopathy. The baekgronnd for the ilwestigation includes, on the one haotl, psychological research on these phenomena and their measurement instruments, and on the other haod, recent advaoces In computational stylometry and text-based author profiling. The measures for these psychological phenomena are provided by recognized self-report psychological surveys adapted to Russian. Morphological and semantic analysis are applied to investigate the relationship between the Dark traits and their linguistic manifestation in social network texts. Slgnlflcant morphological and semantic correlates of Narcissism, MachlavelUanlsm and Psychopathy are ldentllled and compared to respective advaoces In Engltsh author proftUng. In order to deepen our underslanding of the relation between these psychological characteristics aod natural language use, the identified linguistic features are Interpreted In terms of the line-grained factor structure of the Dark traits. Identifying correlated features is a step towards automatic Dark trait prediction aod early detection of the potentially harmful mental states.

Язык оригиналаанглийский
Название основной публикацииProceedings of the AINL FRUCT 2016 Conference
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы72 - 79
ISBN (электронное издание)9789526839783
СостояниеОпубликовано - 3 апр 2017
СобытиеArtificial Intelligence and Natural Language FRUCT Conference - Saint-Petersburg, Российская Федерация
Продолжительность: 10 ноя 201612 ноя 2016
Номер конференции: 5
http://ainlconf.ru/2016

конференция

конференцияArtificial Intelligence and Natural Language FRUCT Conference
Сокращенное названиеAINL FRUCT 2016
Страна/TерриторияРоссийская Федерация
ГородSaint-Petersburg
Период10/11/1612/11/16
Сайт в сети Internet

    Предметные области Scopus

  • Искусственный интеллект

ID: 7609549