DOI

In this paper we go on with the analysis of the asymptotic behavior of Lur'e-type systems with periodic nonlinearities and infinite sets of equilibria. It is well known by now that this class of systems can not be efficiently investigated by the second Lyapunov method with the standard Lur'e-Postnikov function ("a quadratic form plus an integral of the nonlinearity"). So several new methods have been elaborated within the framework of Lyapunov direct method. The nonlocal reduction technique proposed by G.A. Leonov in the 1980s is based on the comparison principle. The feedback system is reduced to a low-order system with the same nonlinearity and known asymptotic behavior. Its trajectories are injected into Lyapunov function of the original system. In this paper we develop the method of nonlocal reduction. We propose a new Lyapunov-type function which involves both the trajectories of the comparison system and a modified Lur'e-Postnikov function. As a result a new frequency-algebraic criterion ensuring the convergence of every solution to some equilibrium point is obtained.
Переведенное названиеПрименение метода нелокального сведения Леонова для исследования точечной устойчивости фазовых систем
Язык оригиналаанглийский
Название основной публикацииProceedings of 2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference), STAB 2020
РедакторыValentin N. Tkhai
ИздательInstitute of Electrical and Electronics Engineers Inc.
Число страниц4
ISBN (электронное издание)978-1-7281-6705-3
ISBN (печатное издание)978-1-7281-6706-0
DOI
СостояниеОпубликовано - июн 2020
Событие15th International Conference on Stability and Oscillations of Nonlinear Control Systems : Pyatnitskiy's Conference - ИПУ РАН, Москва, Российская Федерация
Продолжительность: 2 июн 20205 июн 2020
Номер конференции: 15

конференция

конференция15th International Conference on Stability and Oscillations of Nonlinear Control Systems
Сокращенное названиеSTAB 2020
Страна/TерриторияРоссийская Федерация
ГородМосква
Период2/06/205/06/20

    Предметные области Scopus

  • Общее машиностроение
  • Теория оптимизации
  • Системотехника

ID: 71409527