Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Large Deviation Principle for Moderate Deviation Probabilities of Bootstrap Empirical Measures. / Ermakov, M. S.
в: Journal of Mathematical Sciences (United States), Том 204, № 1, 2015, стр. 90-115.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Large Deviation Principle for Moderate Deviation Probabilities of Bootstrap Empirical Measures
AU - Ermakov, M. S.
N1 - Publisher Copyright: © 2014, Springer Science+Business Media New York. Copyright: Copyright 2016 Elsevier B.V., All rights reserved.
PY - 2015
Y1 - 2015
N2 - We prove two Large Deviation Principles (LDP) in the zone of moderate deviation probabilities. First we establish the LDP for conditional distributions of moderate deviations of empirical bootstrap measures given an empirical probability measure. Then we establish the LDP for the joint distributions of an empirical measure and a bootstrap empirical measure. Using these LDPs, similar LDPs for differentiable statistical functionals can be established. The LDPs for moderate deviations of an empirical quantile process and an empirical bootstrap copula function are provided as illustrations of these results. Bibliography: 28 titles.
AB - We prove two Large Deviation Principles (LDP) in the zone of moderate deviation probabilities. First we establish the LDP for conditional distributions of moderate deviations of empirical bootstrap measures given an empirical probability measure. Then we establish the LDP for the joint distributions of an empirical measure and a bootstrap empirical measure. Using these LDPs, similar LDPs for differentiable statistical functionals can be established. The LDPs for moderate deviations of an empirical quantile process and an empirical bootstrap copula function are provided as illustrations of these results. Bibliography: 28 titles.
UR - http://www.scopus.com/inward/record.url?scp=84925510949&partnerID=8YFLogxK
U2 - 10.1007/s10958-014-2189-0
DO - 10.1007/s10958-014-2189-0
M3 - Article
AN - SCOPUS:84925510949
VL - 204
SP - 90
EP - 115
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 1
ER -
ID: 71601827