Standard

L2-SMALL DEVIATIONS FOR WEIGHTED STATIONARY PROCESSES. / Лифшиц, Михаил Анатольевич; Назаров, Александр Ильич.

в: Mathematika, Том 64, № 2, 2018, стр. 387-405.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{17fbbe75c5de4e1fbd2329a3d714eac5,
title = "L2-SMALL DEVIATIONS FOR WEIGHTED STATIONARY PROCESSES",
abstract = "We find logarithmic asymptotics of -small deviation probabilities for weighted stationary Gaussian processes (both for real and complex-valued) having a power-type discrete or continuous spectrum. Our results are based on the spectral theory of pseudo-differential operators developed by Birman and Solomyak.",
keywords = "малые уклонения случайных процессов",
author = "Лифшиц, {Михаил Анатольевич} and Назаров, {Александр Ильич}",
year = "2018",
doi = "10.1112/S0025579317000572",
language = "English",
volume = "64",
pages = "387--405",
journal = "Mathematika",
issn = "0025-5793",
publisher = "Cambridge University Press",
number = "2",

}

RIS

TY - JOUR

T1 - L2-SMALL DEVIATIONS FOR WEIGHTED STATIONARY PROCESSES

AU - Лифшиц, Михаил Анатольевич

AU - Назаров, Александр Ильич

PY - 2018

Y1 - 2018

N2 - We find logarithmic asymptotics of -small deviation probabilities for weighted stationary Gaussian processes (both for real and complex-valued) having a power-type discrete or continuous spectrum. Our results are based on the spectral theory of pseudo-differential operators developed by Birman and Solomyak.

AB - We find logarithmic asymptotics of -small deviation probabilities for weighted stationary Gaussian processes (both for real and complex-valued) having a power-type discrete or continuous spectrum. Our results are based on the spectral theory of pseudo-differential operators developed by Birman and Solomyak.

KW - малые уклонения случайных процессов

UR - http://www.scopus.com/inward/record.url?scp=85054163404&partnerID=8YFLogxK

UR - http://www.mendeley.com/research/l2small-deviations-weighted-stationary-processes

U2 - 10.1112/S0025579317000572

DO - 10.1112/S0025579317000572

M3 - Article

VL - 64

SP - 387

EP - 405

JO - Mathematika

JF - Mathematika

SN - 0025-5793

IS - 2

ER -

ID: 17645360