Standard

(K,Na)2[AsB6O12]2[B3O3(OH)3], a new microporous material, and its comparison to teruggite. / Pankova, Yulia A.; Krivovichev, Sergey V.

в: Minerals, Том 9, № 12, 781, 12.2019.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{b98fd81da08c4fe489ec79c4261c73cf,
title = "(K,Na)2[AsB6O12]2[B3O3(OH)3], a new microporous material, and its comparison to teruggite",
abstract = "Single crystals of the novel boroarsenate (K,Na)2[As2B12O24][B3O3(OH)3] (I) were obtained using the borax flux method. The crystal structure of I was found to be triclinic, P-1, a = 8.414(5), b = 10.173(6), c = 15.90(1) {\AA}, α = 79.56(1), β = 78.68(1), γ = 70.91(1), V = 1251(1) {\AA}3, Z = 2. The crystal structure of I is based upon the novel [AsB6O12]− microporous boroarsenate framework formed by B and As coordination polyhedra. This framework can be subdivided into borate units that are interlinked by AsO4 tetrahedra. In the case of I, the borate substructure is a chain consisting of triborate rings, □2∆, formed by two (BO3) triangles and one (BO4) tetrahedron connected through shared common oxygen atoms. The chains are extended along [011] and are interlinked by (AsO4) tetrahedra in the [011] direction. As a result, the framework has large channels parallel to [100], having an effective diameter of 4.2 × 5.6 {\AA}2. The channels contain occluded electroneutral ring triborate complexes, [B3O3(OH)3]0, formed by three (BO2(OH−))− triangles sharing common O atoms, as well as K+ and Na+ cations. The triborate [B3O3(OH)3]0 units correspond to similar clusters found in the crystal structure of the α-form of metaboric acid, HBO2. According to information-based complexity calculations, the crystal structure of I should be described as complex, with IG = 5.781 bits/atom and IG,total = 625.950 bits/cell. Teruggite, Ca4Mg[B6As(OH)6O11]2(H2O)14, the only known boroarsenate of natural origin, has almost twice as much information per unit cell, with IG,total = 1201.992 bits/cell. The observed difference in structural complexity between I and teruggite is the consequence of their chemistry (hydration state) and different formation conditions.",
keywords = "Boroarsenate, Crystal structure, Microporous framework, Shannon information, Structural complexity, Terrugite",
author = "Pankova, {Yulia A.} and Krivovichev, {Sergey V.}",
note = "Pankova, Y.A.; Krivovichev, S.V. (K,Na)2[AsB6O12]2[B3O3(OH)3], a New Microporous Material, and Its Comparison to Teruggite. Minerals 2019, 9, 781.",
year = "2019",
month = dec,
doi = "10.3390/min9120781",
language = "English",
volume = "9",
journal = "Minerals",
issn = "2075-163X",
publisher = "MDPI AG",
number = "12",

}

RIS

TY - JOUR

T1 - (K,Na)2[AsB6O12]2[B3O3(OH)3], a new microporous material, and its comparison to teruggite

AU - Pankova, Yulia A.

AU - Krivovichev, Sergey V.

N1 - Pankova, Y.A.; Krivovichev, S.V. (K,Na)2[AsB6O12]2[B3O3(OH)3], a New Microporous Material, and Its Comparison to Teruggite. Minerals 2019, 9, 781.

PY - 2019/12

Y1 - 2019/12

N2 - Single crystals of the novel boroarsenate (K,Na)2[As2B12O24][B3O3(OH)3] (I) were obtained using the borax flux method. The crystal structure of I was found to be triclinic, P-1, a = 8.414(5), b = 10.173(6), c = 15.90(1) Å, α = 79.56(1), β = 78.68(1), γ = 70.91(1), V = 1251(1) Å3, Z = 2. The crystal structure of I is based upon the novel [AsB6O12]− microporous boroarsenate framework formed by B and As coordination polyhedra. This framework can be subdivided into borate units that are interlinked by AsO4 tetrahedra. In the case of I, the borate substructure is a chain consisting of triborate rings, □2∆, formed by two (BO3) triangles and one (BO4) tetrahedron connected through shared common oxygen atoms. The chains are extended along [011] and are interlinked by (AsO4) tetrahedra in the [011] direction. As a result, the framework has large channels parallel to [100], having an effective diameter of 4.2 × 5.6 Å2. The channels contain occluded electroneutral ring triborate complexes, [B3O3(OH)3]0, formed by three (BO2(OH−))− triangles sharing common O atoms, as well as K+ and Na+ cations. The triborate [B3O3(OH)3]0 units correspond to similar clusters found in the crystal structure of the α-form of metaboric acid, HBO2. According to information-based complexity calculations, the crystal structure of I should be described as complex, with IG = 5.781 bits/atom and IG,total = 625.950 bits/cell. Teruggite, Ca4Mg[B6As(OH)6O11]2(H2O)14, the only known boroarsenate of natural origin, has almost twice as much information per unit cell, with IG,total = 1201.992 bits/cell. The observed difference in structural complexity between I and teruggite is the consequence of their chemistry (hydration state) and different formation conditions.

AB - Single crystals of the novel boroarsenate (K,Na)2[As2B12O24][B3O3(OH)3] (I) were obtained using the borax flux method. The crystal structure of I was found to be triclinic, P-1, a = 8.414(5), b = 10.173(6), c = 15.90(1) Å, α = 79.56(1), β = 78.68(1), γ = 70.91(1), V = 1251(1) Å3, Z = 2. The crystal structure of I is based upon the novel [AsB6O12]− microporous boroarsenate framework formed by B and As coordination polyhedra. This framework can be subdivided into borate units that are interlinked by AsO4 tetrahedra. In the case of I, the borate substructure is a chain consisting of triborate rings, □2∆, formed by two (BO3) triangles and one (BO4) tetrahedron connected through shared common oxygen atoms. The chains are extended along [011] and are interlinked by (AsO4) tetrahedra in the [011] direction. As a result, the framework has large channels parallel to [100], having an effective diameter of 4.2 × 5.6 Å2. The channels contain occluded electroneutral ring triborate complexes, [B3O3(OH)3]0, formed by three (BO2(OH−))− triangles sharing common O atoms, as well as K+ and Na+ cations. The triborate [B3O3(OH)3]0 units correspond to similar clusters found in the crystal structure of the α-form of metaboric acid, HBO2. According to information-based complexity calculations, the crystal structure of I should be described as complex, with IG = 5.781 bits/atom and IG,total = 625.950 bits/cell. Teruggite, Ca4Mg[B6As(OH)6O11]2(H2O)14, the only known boroarsenate of natural origin, has almost twice as much information per unit cell, with IG,total = 1201.992 bits/cell. The observed difference in structural complexity between I and teruggite is the consequence of their chemistry (hydration state) and different formation conditions.

KW - Boroarsenate

KW - Crystal structure

KW - Microporous framework

KW - Shannon information

KW - Structural complexity

KW - Terrugite

UR - http://www.scopus.com/inward/record.url?scp=85076926279&partnerID=8YFLogxK

UR - https://www.mdpi.com/2075-163X/9/12/781

U2 - 10.3390/min9120781

DO - 10.3390/min9120781

M3 - Article

AN - SCOPUS:85076926279

VL - 9

JO - Minerals

JF - Minerals

SN - 2075-163X

IS - 12

M1 - 781

ER -

ID: 51977601