Standard

Kaon femtoscopy in Pb-Pb collisions at s NN =2.76 TeV. / ALICE Collaboration.

в: Physical Review C, Том 96, № 6, 064613, 21.12.2017.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

ALICE Collaboration 2017, 'Kaon femtoscopy in Pb-Pb collisions at s NN =2.76 TeV', Physical Review C, Том. 96, № 6, 064613. https://doi.org/10.1103/PhysRevC.96.064613

APA

ALICE Collaboration (2017). Kaon femtoscopy in Pb-Pb collisions at s NN =2.76 TeV. Physical Review C, 96(6), [064613]. https://doi.org/10.1103/PhysRevC.96.064613

Vancouver

ALICE Collaboration. Kaon femtoscopy in Pb-Pb collisions at s NN =2.76 TeV. Physical Review C. 2017 Дек. 21;96(6). 064613. https://doi.org/10.1103/PhysRevC.96.064613

Author

ALICE Collaboration. / Kaon femtoscopy in Pb-Pb collisions at s NN =2.76 TeV. в: Physical Review C. 2017 ; Том 96, № 6.

BibTeX

@article{08be2e0d821f46bcaa37e9a83e0e273d,
title = "Kaon femtoscopy in Pb-Pb collisions at s NN =2.76 TeV",
abstract = "We present the results of three-dimensional femtoscopic analyses for charged and neutral kaons recorded by ALICE in Pb-Pb collisions at sNN=2.76 TeV. Femtoscopy is used to measure the space-time characteristics of particle production from the effects of quantum statistics and final-state interactions in two-particle correlations. Kaon femtoscopy is an important supplement to that of pions because it allows one to distinguish between different model scenarios working equally well for pions. In particular, we compare the measured three-dimensional kaon radii with a purely hydrodynamical calculation and a model where the hydrodynamic phase is followed by a hadronic rescattering stage. The former predicts an approximate transverse mass (mT) scaling of source radii obtained from pion and kaon correlations. This mT scaling appears to be broken in our data, which indicates the importance of the hadronic rescattering phase at LHC energies. A kT scaling of pion and kaon source radii is observed instead. The time of maximal emission of the system is estimated by using the three-dimensional femtoscopic analysis for kaons. The measured emission time is larger than that of pions. Our observation is well supported by the hydrokinetic model predictions.",
author = "{ALICE Collaboration} and S. Acharya and J. Adam and D. Adamov{\'a} and J. Adolfsson and Aggarwal, {M. M.} and {Aglieri Rinella}, G. and M. Agnello and N. Agrawal and Z. Ahammed and N. Ahmad and Ahn, {S. U.} and S. Aiola and A. Akindinov and Alam, {S. N.} and Alba, {J. L.B.} and Albuquerque, {D. S.D.} and D. Aleksandrov and B. Alessandro and {Alfaro Molina}, R. and A. Alici and A. Alkin and J. Alme and T. Alt and L. Altenkamper and I. Altsybeev and {Alves Garcia Prado}, C. and C. Andrei and D. Andreou and Andrews, {H. A.} and A. Andronic and V. Anguelov and C. Anson and T. Anti{\v c}i{\'c} and F. Antinori and P. Antonioli and R. Anwar and L. Aphecetche and H. Appelsh{\"a}user and S. Arcelli and R. Arnaldi and Arnold, {O. W.} and Arsene, {I. C.} and M. Arslandok and B. Audurier and G. Feofilov and V. Kondratiev and V. Kovalenko and V. Vechernin and L. Vinogradov and A. Zarochentsev",
year = "2017",
month = dec,
day = "21",
doi = "10.1103/PhysRevC.96.064613",
language = "English",
volume = "96",
journal = "Physical Review C - Nuclear Physics",
issn = "0556-2813",
publisher = "American Physical Society",
number = "6",

}

RIS

TY - JOUR

T1 - Kaon femtoscopy in Pb-Pb collisions at s NN =2.76 TeV

AU - ALICE Collaboration

AU - Acharya, S.

AU - Adam, J.

AU - Adamová, D.

AU - Adolfsson, J.

AU - Aggarwal, M. M.

AU - Aglieri Rinella, G.

AU - Agnello, M.

AU - Agrawal, N.

AU - Ahammed, Z.

AU - Ahmad, N.

AU - Ahn, S. U.

AU - Aiola, S.

AU - Akindinov, A.

AU - Alam, S. N.

AU - Alba, J. L.B.

AU - Albuquerque, D. S.D.

AU - Aleksandrov, D.

AU - Alessandro, B.

AU - Alfaro Molina, R.

AU - Alici, A.

AU - Alkin, A.

AU - Alme, J.

AU - Alt, T.

AU - Altenkamper, L.

AU - Altsybeev, I.

AU - Alves Garcia Prado, C.

AU - Andrei, C.

AU - Andreou, D.

AU - Andrews, H. A.

AU - Andronic, A.

AU - Anguelov, V.

AU - Anson, C.

AU - Antičić, T.

AU - Antinori, F.

AU - Antonioli, P.

AU - Anwar, R.

AU - Aphecetche, L.

AU - Appelshäuser, H.

AU - Arcelli, S.

AU - Arnaldi, R.

AU - Arnold, O. W.

AU - Arsene, I. C.

AU - Arslandok, M.

AU - Audurier, B.

AU - Feofilov, G.

AU - Kondratiev, V.

AU - Kovalenko, V.

AU - Vechernin, V.

AU - Vinogradov, L.

AU - Zarochentsev, A.

PY - 2017/12/21

Y1 - 2017/12/21

N2 - We present the results of three-dimensional femtoscopic analyses for charged and neutral kaons recorded by ALICE in Pb-Pb collisions at sNN=2.76 TeV. Femtoscopy is used to measure the space-time characteristics of particle production from the effects of quantum statistics and final-state interactions in two-particle correlations. Kaon femtoscopy is an important supplement to that of pions because it allows one to distinguish between different model scenarios working equally well for pions. In particular, we compare the measured three-dimensional kaon radii with a purely hydrodynamical calculation and a model where the hydrodynamic phase is followed by a hadronic rescattering stage. The former predicts an approximate transverse mass (mT) scaling of source radii obtained from pion and kaon correlations. This mT scaling appears to be broken in our data, which indicates the importance of the hadronic rescattering phase at LHC energies. A kT scaling of pion and kaon source radii is observed instead. The time of maximal emission of the system is estimated by using the three-dimensional femtoscopic analysis for kaons. The measured emission time is larger than that of pions. Our observation is well supported by the hydrokinetic model predictions.

AB - We present the results of three-dimensional femtoscopic analyses for charged and neutral kaons recorded by ALICE in Pb-Pb collisions at sNN=2.76 TeV. Femtoscopy is used to measure the space-time characteristics of particle production from the effects of quantum statistics and final-state interactions in two-particle correlations. Kaon femtoscopy is an important supplement to that of pions because it allows one to distinguish between different model scenarios working equally well for pions. In particular, we compare the measured three-dimensional kaon radii with a purely hydrodynamical calculation and a model where the hydrodynamic phase is followed by a hadronic rescattering stage. The former predicts an approximate transverse mass (mT) scaling of source radii obtained from pion and kaon correlations. This mT scaling appears to be broken in our data, which indicates the importance of the hadronic rescattering phase at LHC energies. A kT scaling of pion and kaon source radii is observed instead. The time of maximal emission of the system is estimated by using the three-dimensional femtoscopic analysis for kaons. The measured emission time is larger than that of pions. Our observation is well supported by the hydrokinetic model predictions.

UR - http://www.scopus.com/inward/record.url?scp=85040327642&partnerID=8YFLogxK

U2 - 10.1103/PhysRevC.96.064613

DO - 10.1103/PhysRevC.96.064613

M3 - Article

AN - SCOPUS:85040327642

VL - 96

JO - Physical Review C - Nuclear Physics

JF - Physical Review C - Nuclear Physics

SN - 0556-2813

IS - 6

M1 - 064613

ER -

ID: 37880773