DOI

A series of organometallic complexes containing an alkynylphosphinegold(I) fragment and a phenylene-terpyridine moiety connected together by flexible linker have been prepared using the specially designed terpyridine ligands. The compounds were studied crystallographically to reveal that all of them contain a linearly coordinated Au(I) atom and a free terpyridine moiety. The different orientations of the molecules relative to each other in the solid state determine the multiple noncovalent interactions such as antiparallel ππstacking, CH-π, and CH-Au, but no aurophilic interactions are realized. The organometallic Au(I) complexes obtained show fluorescence in the solution and dual singlet-triplet emission in the solid state. This means that their photophysical behavior is determined by both intermolecular lattice-defined interactions and Au(I) atom introduction. Density functional theory computational analysis supported the assignment of emission to intraligand electronic transitions only inside the phenylene-terpyridine part with no Au(I) involved. In addition, a study of the nature of the excited states for the "dimer"with an antiparallel orientation of the terpyridine fragment showed that this orientation leads to the generation of abstracted singlet and triplet states, lowering their energy in comparison with the monomer complex. Thus, the complexes obtained can be qualified as examples of Au(I)-containing organometallic aggregation-induced-emission luminogens.

Язык оригиналаанглийский
Страницы (с-по)18715-18725
Число страниц11
ЖурналInorganic Chemistry
Том60
Номер выпуска24
Дата раннего онлайн-доступа26 ноя 2021
DOI
СостояниеОпубликовано - 26 ноя 2021

    Предметные области Scopus

  • Физическая и теоретическая химия
  • Неорганическая химия

ID: 89415702