DOI

In this paper, the Jacobi stability of a two-degree-of-freedom mechanical system is studied by the innovative application of KCC-theory, namely differential geometric methods. We discuss the Jacobi stability of two equilibria and a periodic orbit by constructing geometric invariants. Both the regions of Jacobi stability and Lyapunov stability are presented to show the difference. We draw the phase portraits of the deviation vector near two equilibria under specific parameter values and initial conditions, and point out the sensitivity of deviation vector to initial conditions. In addition, the corresponding instability exponent and curvature are applicable for predicting the onset of chaos, which help us to detect chaotic behaviors quantitatively.

Язык оригиналаанглийский
Номер статьи2150075
Число страниц15
ЖурналInternational Journal of Bifurcation and Chaos
Том31
Номер выпуска05
DOI
СостояниеОпубликовано - апр 2021

    Предметные области Scopus

  • Технология (разное)
  • Общие
  • Прикладная математика
  • Моделирование и симуляция

ID: 78768352