DOI

The paper deals with Jacobi matrices with weights λk given by λk=kα(1+Δk), where α∈(12, 1) and limkΔk=0. The main question studied here concerns when the spectrum of the operator J defined by the Jacobi matrix has absolutely continuous component covering the real line. A sufficient condition is given for a positive answer to the above question. The method used in the paper is based on a detailed analysis of generalized eigenvectors of J. In turn this analysis relies on the so-called grouping in blocks approach to a large product of the transfer matrices associated to J.

Язык оригиналаанглийский
Страницы (с-по)218-243
Число страниц26
ЖурналJournal of Functional Analysis
Том166
Номер выпуска2
DOI
СостояниеОпубликовано - 20 авг 1999

    Предметные области Scopus

  • Анализ

ID: 97803760