Standard

Isometric model of metric spaces. / Simonov, Sergey.

2018 DAYS ON DIFFRACTION (DD). ред. / OV Motygin; AP Kiselev; LI Goray; AY Kazakov; AS Kirpichnikova; MV Perel. IEEE Canada, 2018. стр. 274-276.

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференцииРецензирование

Harvard

Simonov, S 2018, Isometric model of metric spaces. в OV Motygin, AP Kiselev, LI Goray, AY Kazakov, AS Kirpichnikova & MV Perel (ред.), 2018 DAYS ON DIFFRACTION (DD). IEEE Canada, стр. 274-276, 2018 International Conference Days on Diffraction, DD 2018, St. Petersburg, Российская Федерация, 4/06/18.

APA

Simonov, S. (2018). Isometric model of metric spaces. в OV. Motygin, AP. Kiselev, LI. Goray, AY. Kazakov, AS. Kirpichnikova, & MV. Perel (Ред.), 2018 DAYS ON DIFFRACTION (DD) (стр. 274-276). IEEE Canada.

Vancouver

Simonov S. Isometric model of metric spaces. в Motygin OV, Kiselev AP, Goray LI, Kazakov AY, Kirpichnikova AS, Perel MV, Редакторы, 2018 DAYS ON DIFFRACTION (DD). IEEE Canada. 2018. стр. 274-276

Author

Simonov, Sergey. / Isometric model of metric spaces. 2018 DAYS ON DIFFRACTION (DD). Редактор / OV Motygin ; AP Kiselev ; LI Goray ; AY Kazakov ; AS Kirpichnikova ; MV Perel. IEEE Canada, 2018. стр. 274-276

BibTeX

@inproceedings{b542c5bbb6fb4f50aebfafb63a750b0e,
title = "Isometric model of metric spaces",
abstract = "Let Omega be a metric space and D be the lattice of its open sets with the partial order subset of, equipped with the order topology. For a set A subset of Omega, let A(t) denote its metric t-neighborhood. In the lattice of D-valued functions on (0, + infinity), consider the family ID = {A (.) vertical bar A(t) = A(t), A is an element of D}. Let (Omega) over tilde be the set of atoms of its closure, (ID) over bar, in the topology of pointwise convergence. Under certain conditions one can define a metric on (Omega) over tilde. We describe a class of metric spaces Omega such that (Omega) over tilde is isometric to Omega.",
author = "Sergey Simonov",
year = "2018",
language = "Английский",
pages = "274--276",
editor = "OV Motygin and AP Kiselev and LI Goray and AY Kazakov and AS Kirpichnikova and MV Perel",
booktitle = "2018 DAYS ON DIFFRACTION (DD)",
publisher = "IEEE Canada",
address = "Канада",
note = "null ; Conference date: 04-06-2018 Through 08-06-2018",

}

RIS

TY - GEN

T1 - Isometric model of metric spaces

AU - Simonov, Sergey

PY - 2018

Y1 - 2018

N2 - Let Omega be a metric space and D be the lattice of its open sets with the partial order subset of, equipped with the order topology. For a set A subset of Omega, let A(t) denote its metric t-neighborhood. In the lattice of D-valued functions on (0, + infinity), consider the family ID = {A (.) vertical bar A(t) = A(t), A is an element of D}. Let (Omega) over tilde be the set of atoms of its closure, (ID) over bar, in the topology of pointwise convergence. Under certain conditions one can define a metric on (Omega) over tilde. We describe a class of metric spaces Omega such that (Omega) over tilde is isometric to Omega.

AB - Let Omega be a metric space and D be the lattice of its open sets with the partial order subset of, equipped with the order topology. For a set A subset of Omega, let A(t) denote its metric t-neighborhood. In the lattice of D-valued functions on (0, + infinity), consider the family ID = {A (.) vertical bar A(t) = A(t), A is an element of D}. Let (Omega) over tilde be the set of atoms of its closure, (ID) over bar, in the topology of pointwise convergence. Under certain conditions one can define a metric on (Omega) over tilde. We describe a class of metric spaces Omega such that (Omega) over tilde is isometric to Omega.

M3 - статья в сборнике материалов конференции

SP - 274

EP - 276

BT - 2018 DAYS ON DIFFRACTION (DD)

A2 - Motygin, OV

A2 - Kiselev, AP

A2 - Goray, LI

A2 - Kazakov, AY

A2 - Kirpichnikova, AS

A2 - Perel, MV

PB - IEEE Canada

Y2 - 4 June 2018 through 8 June 2018

ER -

ID: 47875573