Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
In this paper, function spaces V ∩ lAp(ω) are considered in the context of their multiplicative structure. The space V is determined by conditions on the values of a function in a disk (for example, CA, LipAα). We denote by lA p(ω) the space of power series such that their Taylor coefficients are p-summable with weight s. For an analytic function Φ acting in a space of this type, we prove the following alternative: either Φ′(z) = 0, or the space is a Banach algebra with respect to pointwise multiplication. For a wide class of weights w, we establish the continuity of the identity embedding mult(V ∩ lAp (ω)) → mult lA p. An estimate for the lp-multiplicative norm of random polynomials is found. This estimate can be considered as an extension of the known result by Salem-Zygmund. Bibliography: 10 titles.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 3573-3588 |
Число страниц | 16 |
Журнал | Journal of Mathematical Sciences |
Том | 92 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - 1 янв 1998 |
ID: 27078637