Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Inverse Steklov spectral problem for curvilinear polygons. / Krymski, Stanislav; Levitin, Michael; Parnovski, Leonid; Polterovich, Iosif; Sher, David A.
в: International Mathematics Research Notices, Том 2021, № 1, 01.01.2021, стр. 1-37.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Inverse Steklov spectral problem for curvilinear polygons
AU - Krymski, Stanislav
AU - Levitin, Michael
AU - Parnovski, Leonid
AU - Polterovich, Iosif
AU - Sher, David A.
N1 - Publisher Copyright: © 2020 The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - This paper studies the inverse Steklov spectral problem for curvilinear polygons. For generic curvilinear polygons with angles less than $\pi$, we prove that the asymptotics of Steklov eigenvalues obtained in arXiv:1908.06455 determines, in a constructive manner, the number of vertices and the properly ordered sequence of side lengths, as well as the angles up to a certain equivalence relation. We also present counterexamples to this statement if the generic assumptions fail. In particular, we show that there exist non-isometric triangles with asymptotically close Steklov spectra. Among other techniques, we use a version of the Hadamard--Weierstrass factorisation theorem, allowing us to reconstruct a trigonometric function from the asymptotics of its roots.
AB - This paper studies the inverse Steklov spectral problem for curvilinear polygons. For generic curvilinear polygons with angles less than $\pi$, we prove that the asymptotics of Steklov eigenvalues obtained in arXiv:1908.06455 determines, in a constructive manner, the number of vertices and the properly ordered sequence of side lengths, as well as the angles up to a certain equivalence relation. We also present counterexamples to this statement if the generic assumptions fail. In particular, we show that there exist non-isometric triangles with asymptotically close Steklov spectra. Among other techniques, we use a version of the Hadamard--Weierstrass factorisation theorem, allowing us to reconstruct a trigonometric function from the asymptotics of its roots.
KW - math.SP
KW - 35R30 (Primary) 35P20 (Secondary)
UR - https://www.mendeley.com/catalogue/ef0fe55b-9781-39aa-b29b-62d50a493625/
UR - http://www.scopus.com/inward/record.url?scp=85118800992&partnerID=8YFLogxK
U2 - 10.1093/imrn/rnaa200
DO - 10.1093/imrn/rnaa200
M3 - Article
VL - 2021
SP - 1
EP - 37
JO - International Mathematics Research Notices
JF - International Mathematics Research Notices
SN - 1073-7928
IS - 1
ER -
ID: 84425193