Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Inverse resonance scattering for massless Dirac operators on the real line. / Korotyaev , Evgeny; Mokeev , Dmitrii.
в: Asymptotic Analysis, Том 132, 2023, стр. 83-130.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Inverse resonance scattering for massless Dirac operators on the real line
AU - Korotyaev , Evgeny
AU - Mokeev , Dmitrii
N1 - M1 - 1-2
PY - 2023
Y1 - 2023
N2 - We consider massless Dirac operators on the real line with compactly supported potentials. We solve two inverse problems: in terms of zeros of reflection coefficient and in terms of poles of reflection coefficients (i.e. resonances). Moreover, we prove the following: 1) a zero of the reflection coefficient can be arbitrarily shifted, such that we obtain the sequence of zeros of the reflection coefficient for another compactly supported potential, 2) the set of “isoresonance potentials” is described, 3) the forbidden domain for resonances is estimated, 4) asymptotics of the resonances counting function is determined, 5) these results are applied to canonical systems.
AB - We consider massless Dirac operators on the real line with compactly supported potentials. We solve two inverse problems: in terms of zeros of reflection coefficient and in terms of poles of reflection coefficients (i.e. resonances). Moreover, we prove the following: 1) a zero of the reflection coefficient can be arbitrarily shifted, such that we obtain the sequence of zeros of the reflection coefficient for another compactly supported potential, 2) the set of “isoresonance potentials” is described, 3) the forbidden domain for resonances is estimated, 4) asymptotics of the resonances counting function is determined, 5) these results are applied to canonical systems.
KW - Dirac operators
KW - inverse problems
KW - resonances
KW - canonical systems
KW - compactly supported potentials
UR - https://content.iospress.com/articles/asymptotic-analysis/asy221786#b
U2 - 10.3233/ASY-221786
DO - 10.3233/ASY-221786
M3 - Article
VL - 132
SP - 83
EP - 130
JO - Asymptotic Analysis
JF - Asymptotic Analysis
SN - 0921-7134
ER -
ID: 100577927