Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Inverse problem for a one-dimensional dynamical Dirac system (BC-method). / Belishev, M. I.; Mikhailov, V. S.
в: Inverse Problems, Том 30, № 12, 125013, 12.2014.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Inverse problem for a one-dimensional dynamical Dirac system (BC-method)
AU - Belishev, M. I.
AU - Mikhailov, V. S.
PY - 2014/12
Y1 - 2014/12
N2 - A forward problem for the Dirac system is to find u = ((u1(x, t))(u2(x,t))) obeying iu(t) + ((0) (1) (-1 0))u(x) + ((p) (q) (q) (-p))u = 0 for x> 0, t> 0; u( x, 0) = ((0) (0)) for x >= 0, and u(1)(0, t) = f( t) for t > 0, with the real p = p(x), q = q( x). An input-output map R: u(1)( 0, .) double right arrow u2( 0, .) is of the convolution form Rf = if + r * f, where r = r( t) is a response function. By hyperbolicity of the system, for any T > 0, function r I-0 0, given r I-0
AB - A forward problem for the Dirac system is to find u = ((u1(x, t))(u2(x,t))) obeying iu(t) + ((0) (1) (-1 0))u(x) + ((p) (q) (q) (-p))u = 0 for x> 0, t> 0; u( x, 0) = ((0) (0)) for x >= 0, and u(1)(0, t) = f( t) for t > 0, with the real p = p(x), q = q( x). An input-output map R: u(1)( 0, .) double right arrow u2( 0, .) is of the convolution form Rf = if + r * f, where r = r( t) is a response function. By hyperbolicity of the system, for any T > 0, function r I-0 0, given r I-0
KW - one-dimensional dynamical Dirac system
KW - controllability
KW - determination of potential
KW - characterization of inverse data
KW - OPERATORS
U2 - 10.1088/0266-5611/30/12/125013
DO - 10.1088/0266-5611/30/12/125013
M3 - статья
VL - 30
JO - Inverse Problems
JF - Inverse Problems
SN - 0266-5611
IS - 12
M1 - 125013
ER -
ID: 38721748