DOI

The Kuramoto model is able to describe a huge variety of examples of synchronization in the real world. We re-consider it through the framework of the network science and study the phenomenon of a particular interest, agent clustering. We assume that clusters are already recognized by some algorithm and then consider them as new variables on mesoscopic scale, which allows one to significantly reduce the dimensionality of a complicated (complex) system, thus reducing the required number of control inputs. In contrast to the common approach, where each agent is treated separately, we propose an alternative one using a supplementary control input, which is equal for the whole cluster. We also perform an analysis of this input by finding its limitations required for cluster structure to remain invariant in a network of Kuramoto oscillators. The theoretical results are demonstrated on a simulated multi-agent network with multiple clusters.

Язык оригиналаанглийский
Название основной публикацииArtificial Intelligence
Подзаголовок основной публикации18th Russian Conference, RCAI 2020, Proceedings
РедакторыSergei O. Kuznetsov, Aleksandr I. Panov, Konstantin S. Yakovlev
ИздательSpringer Nature
Страницы472-486
Число страниц15
ISBN (электронное издание)9783030595357
ISBN (печатное издание)9783030595340
DOI
СостояниеОпубликовано - 2020
Событие18th Russian Conference on Artificial Intelligence, RCAI 2020 - Moscow, Российская Федерация
Продолжительность: 10 окт 202016 окт 2020

Серия публикаций

НазваниеLecture Notes in Computer Science
Том12412 LNAI
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция18th Russian Conference on Artificial Intelligence, RCAI 2020
Страна/TерриторияРоссийская Федерация
ГородMoscow
Период10/10/2016/10/20

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 69965314