Standard

Interface Schur complement preconditioning for piece wise orthotropic discretizations with high aspect ratios. / Korneev, V.; Poborchi, S.; Salgado, A.

Быстрые сеточные методы вычислительной механики сплошной среды. Издательство Санкт-Петербургского университета, 2007. стр. 106-159.

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборникенаучная

Harvard

Korneev, V, Poborchi, S & Salgado, A 2007, Interface Schur complement preconditioning for piece wise orthotropic discretizations with high aspect ratios. в Быстрые сеточные методы вычислительной механики сплошной среды. Издательство Санкт-Петербургского университета, стр. 106-159.

APA

Korneev, V., Poborchi, S., & Salgado, A. (2007). Interface Schur complement preconditioning for piece wise orthotropic discretizations with high aspect ratios. в Быстрые сеточные методы вычислительной механики сплошной среды (стр. 106-159). Издательство Санкт-Петербургского университета.

Vancouver

Korneev V, Poborchi S, Salgado A. Interface Schur complement preconditioning for piece wise orthotropic discretizations with high aspect ratios. в Быстрые сеточные методы вычислительной механики сплошной среды. Издательство Санкт-Петербургского университета. 2007. стр. 106-159

Author

Korneev, V. ; Poborchi, S. ; Salgado, A. / Interface Schur complement preconditioning for piece wise orthotropic discretizations with high aspect ratios. Быстрые сеточные методы вычислительной механики сплошной среды. Издательство Санкт-Петербургского университета, 2007. стр. 106-159

BibTeX

@inbook{d97e450f40cb40aba0fa8c9c9bd65b6d,
title = "Interface Schur complement preconditioning for piece wise orthotropic discretizations with high aspect ratios",
abstract = "The aim of this paper is to present a DD (domain decomposition) algorithm almost optimal in the total computational work for a piece wise orthotropic discretizations on a domain composed of rectangles with arbitrary aspect ratios. The two nonzero coefficients in the diagonal matrix of coefficients before products of first order derivatives in the energy integral of the problem are assumed to be arbitrary positive numbers different for each subdomain. The rectangular mesh of the finite element discretization is uniform on each subdomain and otherwise arbitrary. The main problem in designing the algorithm is the interface Schur complement preconditioning, which is closely related to obtaining boundary norms for discrete harmonic functions on the shape irregular domains. The computational cost of the presented Schur complement and DD algorithms is O( N(log N)^{1/2) arithmetic operations, where N is the number of unknowns.",
keywords = "haotically subdomain wise variable orthotropism, finite element method, domain decomposition method, fast domain decomposition preconditioners",
author = "V. Korneev and S. Poborchi and A. Salgado",
year = "2007",
language = "English",
isbn = "978--5-914-10-006-0",
pages = "106--159",
booktitle = "Быстрые сеточные методы вычислительной механики сплошной среды",
publisher = "Издательство Санкт-Петербургского университета",
address = "Russian Federation",

}

RIS

TY - CHAP

T1 - Interface Schur complement preconditioning for piece wise orthotropic discretizations with high aspect ratios

AU - Korneev, V.

AU - Poborchi, S.

AU - Salgado, A.

PY - 2007

Y1 - 2007

N2 - The aim of this paper is to present a DD (domain decomposition) algorithm almost optimal in the total computational work for a piece wise orthotropic discretizations on a domain composed of rectangles with arbitrary aspect ratios. The two nonzero coefficients in the diagonal matrix of coefficients before products of first order derivatives in the energy integral of the problem are assumed to be arbitrary positive numbers different for each subdomain. The rectangular mesh of the finite element discretization is uniform on each subdomain and otherwise arbitrary. The main problem in designing the algorithm is the interface Schur complement preconditioning, which is closely related to obtaining boundary norms for discrete harmonic functions on the shape irregular domains. The computational cost of the presented Schur complement and DD algorithms is O( N(log N)^{1/2) arithmetic operations, where N is the number of unknowns.

AB - The aim of this paper is to present a DD (domain decomposition) algorithm almost optimal in the total computational work for a piece wise orthotropic discretizations on a domain composed of rectangles with arbitrary aspect ratios. The two nonzero coefficients in the diagonal matrix of coefficients before products of first order derivatives in the energy integral of the problem are assumed to be arbitrary positive numbers different for each subdomain. The rectangular mesh of the finite element discretization is uniform on each subdomain and otherwise arbitrary. The main problem in designing the algorithm is the interface Schur complement preconditioning, which is closely related to obtaining boundary norms for discrete harmonic functions on the shape irregular domains. The computational cost of the presented Schur complement and DD algorithms is O( N(log N)^{1/2) arithmetic operations, where N is the number of unknowns.

KW - haotically subdomain wise variable orthotropism

KW - finite element method

KW - domain decomposition method

KW - fast domain decomposition preconditioners

M3 - Article in an anthology

SN - 978--5-914-10-006-0

SP - 106

EP - 159

BT - Быстрые сеточные методы вычислительной механики сплошной среды

PB - Издательство Санкт-Петербургского университета

ER -

ID: 4589801