Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике › научная
Interface Schur complement preconditioning for piece wise orthotropic discretizations with high aspect ratios. / Korneev, V.; Poborchi, S.; Salgado, A.
Быстрые сеточные методы вычислительной механики сплошной среды. Издательство Санкт-Петербургского университета, 2007. стр. 106-159.Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике › научная
}
TY - CHAP
T1 - Interface Schur complement preconditioning for piece wise orthotropic discretizations with high aspect ratios
AU - Korneev, V.
AU - Poborchi, S.
AU - Salgado, A.
PY - 2007
Y1 - 2007
N2 - The aim of this paper is to present a DD (domain decomposition) algorithm almost optimal in the total computational work for a piece wise orthotropic discretizations on a domain composed of rectangles with arbitrary aspect ratios. The two nonzero coefficients in the diagonal matrix of coefficients before products of first order derivatives in the energy integral of the problem are assumed to be arbitrary positive numbers different for each subdomain. The rectangular mesh of the finite element discretization is uniform on each subdomain and otherwise arbitrary. The main problem in designing the algorithm is the interface Schur complement preconditioning, which is closely related to obtaining boundary norms for discrete harmonic functions on the shape irregular domains. The computational cost of the presented Schur complement and DD algorithms is O( N(log N)^{1/2) arithmetic operations, where N is the number of unknowns.
AB - The aim of this paper is to present a DD (domain decomposition) algorithm almost optimal in the total computational work for a piece wise orthotropic discretizations on a domain composed of rectangles with arbitrary aspect ratios. The two nonzero coefficients in the diagonal matrix of coefficients before products of first order derivatives in the energy integral of the problem are assumed to be arbitrary positive numbers different for each subdomain. The rectangular mesh of the finite element discretization is uniform on each subdomain and otherwise arbitrary. The main problem in designing the algorithm is the interface Schur complement preconditioning, which is closely related to obtaining boundary norms for discrete harmonic functions on the shape irregular domains. The computational cost of the presented Schur complement and DD algorithms is O( N(log N)^{1/2) arithmetic operations, where N is the number of unknowns.
KW - haotically subdomain wise variable orthotropism
KW - finite element method
KW - domain decomposition method
KW - fast domain decomposition preconditioners
M3 - Article in an anthology
SN - 978--5-914-10-006-0
SP - 106
EP - 159
BT - Быстрые сеточные методы вычислительной механики сплошной среды
PB - Издательство Санкт-Петербургского университета
ER -
ID: 4589801