DOI

The combined approach proposes the use of PBFT and Raft to ensure data consistency and fault tolerance in the system, and also integrates recurrent neural networks to analyze and predict the behavior of nodes in the network. RNNs can be used to detect anomalies, predict system load, and analyze time series data related to node operation. The proposed combined approach opens up new prospects for the development of distributed systems, increasing their reliability, fault tolerance and adaptability to changing conditions. Further research in this direction could lead to more efficient and secure distributed systems that can efficiently handle complex real-world scenarios.
Язык оригиналаанглийский
Название основной публикацииComputational Science and Its Applications -- ICCSA 2024 Workshops
РедакторыOsvaldo Gervasi, Beniamino Murgante, Chiara Garau, David Taniar, Ana Maria A. C. Rocha, Maria Noelia Faginas Lago
Место публикацииCham
ИздательSpringer Nature
Страницы226-237
Число страниц12
ISBN (печатное издание)978-3-031-65154-0
DOI
СостояниеОпубликовано - 30 июл 2024
СобытиеThe 24th International Conference on Computational Science and Its Applications, ICCSA 2024 - Ханой, Вьетнам
Продолжительность: 1 июл 20244 июл 2024
https://2024.iccsa.org/

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том14815 LNCS

конференция

конференцияThe 24th International Conference on Computational Science and Its Applications, ICCSA 2024
Сокращенное названиеICCSA
Страна/TерриторияВьетнам
ГородХаной
Период1/07/244/07/24
Сайт в сети Internet

ID: 122619364