Standard

Integral-difference collision operators : Analytical and numerical spectral analysis. / Melnikov, Yu; Yarevsky, E.

в: Journal of Mathematical Physics, Том 40, № 6, 01.01.1999, стр. 2909-2921.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Melnikov, Y & Yarevsky, E 1999, 'Integral-difference collision operators: Analytical and numerical spectral analysis', Journal of Mathematical Physics, Том. 40, № 6, стр. 2909-2921. https://doi.org/10.1063/1.532735

APA

Vancouver

Author

Melnikov, Yu ; Yarevsky, E. / Integral-difference collision operators : Analytical and numerical spectral analysis. в: Journal of Mathematical Physics. 1999 ; Том 40, № 6. стр. 2909-2921.

BibTeX

@article{d068066a749046eabf915189365658b6,
title = "Integral-difference collision operators: Analytical and numerical spectral analysis",
abstract = "We analyze spectral properties of a class of integral-difference collision operators arising in some nonequilibrium statistical physics models. We present analytical estimates and numerical results for the operators defined on finite intervals and corresponding to the truncated Gaussian equilibrium distribution function. Some conclusions are drawn about the spectrum of operators on whole axis. Physical limitations for these kinds of models are discussed.",
author = "Yu Melnikov and E. Yarevsky",
year = "1999",
month = jan,
day = "1",
doi = "10.1063/1.532735",
language = "English",
volume = "40",
pages = "2909--2921",
journal = "Journal of Mathematical Physics",
issn = "0022-2488",
publisher = "American Institute of Physics",
number = "6",

}

RIS

TY - JOUR

T1 - Integral-difference collision operators

T2 - Analytical and numerical spectral analysis

AU - Melnikov, Yu

AU - Yarevsky, E.

PY - 1999/1/1

Y1 - 1999/1/1

N2 - We analyze spectral properties of a class of integral-difference collision operators arising in some nonequilibrium statistical physics models. We present analytical estimates and numerical results for the operators defined on finite intervals and corresponding to the truncated Gaussian equilibrium distribution function. Some conclusions are drawn about the spectrum of operators on whole axis. Physical limitations for these kinds of models are discussed.

AB - We analyze spectral properties of a class of integral-difference collision operators arising in some nonequilibrium statistical physics models. We present analytical estimates and numerical results for the operators defined on finite intervals and corresponding to the truncated Gaussian equilibrium distribution function. Some conclusions are drawn about the spectrum of operators on whole axis. Physical limitations for these kinds of models are discussed.

UR - http://www.scopus.com/inward/record.url?scp=0033242315&partnerID=8YFLogxK

U2 - 10.1063/1.532735

DO - 10.1063/1.532735

M3 - Article

AN - SCOPUS:0033242315

VL - 40

SP - 2909

EP - 2921

JO - Journal of Mathematical Physics

JF - Journal of Mathematical Physics

SN - 0022-2488

IS - 6

ER -

ID: 36538376