Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Integral representation of linear operators. / Bukhvalov, A. V.
в: Journal of Soviet Mathematics, Том 9, № 2, 01.02.1978, стр. 129-137.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Integral representation of linear operators
AU - Bukhvalov, A. V.
N1 - Bukhvalov, A. V. Integral representation of linear operators // Journal of Soviet Mathematics. - 1978. - Volume 9, Issue 2. – P. 129-137.
PY - 1978/2/1
Y1 - 1978/2/1
N2 - In this paper we obtain necessary and sufficient conditions in order that a linear operator, acting in spaces of measurable functions, should admit an integral representation. We give here the fundamental results. Let (Ti, μi) (i=1,2) be spaces of finite measure, and let (T, μ) be the product of these spaces. Let E be an ideal in the space S(T1, μ1) of measurable functions (i.e., from |e1|≤|e2|, e1∈ S (T1, μ1), e2∈E it follows that e1∈E). THEOREM 2. Let U be a linear operator from E into S(T2, μ2). The following statements are equivalent: 1) there exists a μ-measurable kernel K(t,S) such that (Ue)(S)=∫K(t,S) e(t)d μ(t) (e∈E); 2) if 0≤en≤∈E (n=1,2,...) and en→0 in measure, then (Uen)(S) →0 μ2 a.e. THEOREM 3. Assume that the function F{cyrillic}(t,S) is such that for any e∈E and for s a.e., the μ2-measurable function Y(S)=∫F{cyrillic}(t,S)e(t)d μ1(t) is defined. Then there exists a μ-measurable function K(t,S) such that for any e∈E we have ∫F{cyrillic}(t,S)e(t)d μ1(t)=∫K(t,S)e(t)d μ1(t)μ1a.e.
AB - In this paper we obtain necessary and sufficient conditions in order that a linear operator, acting in spaces of measurable functions, should admit an integral representation. We give here the fundamental results. Let (Ti, μi) (i=1,2) be spaces of finite measure, and let (T, μ) be the product of these spaces. Let E be an ideal in the space S(T1, μ1) of measurable functions (i.e., from |e1|≤|e2|, e1∈ S (T1, μ1), e2∈E it follows that e1∈E). THEOREM 2. Let U be a linear operator from E into S(T2, μ2). The following statements are equivalent: 1) there exists a μ-measurable kernel K(t,S) such that (Ue)(S)=∫K(t,S) e(t)d μ(t) (e∈E); 2) if 0≤en≤∈E (n=1,2,...) and en→0 in measure, then (Uen)(S) →0 μ2 a.e. THEOREM 3. Assume that the function F{cyrillic}(t,S) is such that for any e∈E and for s a.e., the μ2-measurable function Y(S)=∫F{cyrillic}(t,S)e(t)d μ1(t) is defined. Then there exists a μ-measurable function K(t,S) such that for any e∈E we have ∫F{cyrillic}(t,S)e(t)d μ1(t)=∫K(t,S)e(t)d μ1(t)μ1a.e.
KW - linear operators
KW - SCOPUS
UR - http://www.scopus.com/inward/record.url?scp=0039870762&partnerID=8YFLogxK
U2 - 10.1007/BF01578539
DO - 10.1007/BF01578539
M3 - Article
AN - SCOPUS:0039870762
VL - 9
SP - 129
EP - 137
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 2
ER -
ID: 36782950