Standard

Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics. / Calisto, M.; Verronen, P. T.; Rozanov, E.; Peter, T.

в: Atmospheric Chemistry and Physics, Том 12, № 18, 2012, стр. 8679-8686.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Calisto, M, Verronen, PT, Rozanov, E & Peter, T 2012, 'Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics', Atmospheric Chemistry and Physics, Том. 12, № 18, стр. 8679-8686. https://doi.org/10.5194/acp-12-8679-2012

APA

Calisto, M., Verronen, P. T., Rozanov, E., & Peter, T. (2012). Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics. Atmospheric Chemistry and Physics, 12(18), 8679-8686. https://doi.org/10.5194/acp-12-8679-2012

Vancouver

Author

Calisto, M. ; Verronen, P. T. ; Rozanov, E. ; Peter, T. / Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics. в: Atmospheric Chemistry and Physics. 2012 ; Том 12, № 18. стр. 8679-8686.

BibTeX

@article{d7122ac57e81413eae621ad94f8c5d07,
title = "Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics",
abstract = "We have modeled the atmospheric impact of a major solar energetic particle event similar in intensity to what is thought of the Carrington Event of 1-2 September 1859. Ionization rates for the August 1972 solar proton event, which had an energy spectrum comparable to the Carrington Event, were scaled up in proportion to the fluence estimated for both events. We have assumed such an event to take place in the year 2020 in order to investigate the impact on the modern, near future atmosphere. Effects on atmospheric chemistry, temperature and dynamics were investigated using the 3-D Chemistry Climate Model SOCOL v2.0. We find significant responses of NOx, HOx, ozone, temperature and zonal wind. Ozone and NOx have in common an unusually strong and long-lived response to this solar proton event. The model suggests a 3-fold increase of NOx generated in the upper stratosphere lasting until the end of November, and an up to 10-fold increase in upper mesospheric HOx. Due to the NOx and HOx enhancements, ozone reduces by up to 60-80% in the mesosphere during the days after the event, and by up to 20-40% in the middle stratosphere lasting for several months after the event. Total ozone is reduced by up to 20 DU in the Northern Hemisphere and up to 10 DU in the Southern Hemisphere. Free tropospheric and surface air temperatures show a significant cooling of more than 3K and zonal winds change significantly by 3-5 m s(-1) in the UTLS region. In conclusion, a solar proton event, if it took place in the near future with an intensity similar to that ascribed to of the Carrington Event of 1859, must be expected to have a major impact on atmospheric composition throughout the middle atmosphere, resulting in significant and persistent decrease in total ozone.",
keywords = "PARTICLE-PRECIPITATION EVENTS, CLIMATE MODEL SOCOL, MIDDLE ATMOSPHERE, ION CHEMISTRY, TRANSPORT, NITROGEN, IMPACT",
author = "M. Calisto and Verronen, {P. T.} and E. Rozanov and T. Peter",
year = "2012",
doi = "10.5194/acp-12-8679-2012",
language = "Английский",
volume = "12",
pages = "8679--8686",
journal = "Atmospheric Chemistry and Physics",
issn = "1680-7316",
publisher = "Copernicus GmbH ",
number = "18",

}

RIS

TY - JOUR

T1 - Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics

AU - Calisto, M.

AU - Verronen, P. T.

AU - Rozanov, E.

AU - Peter, T.

PY - 2012

Y1 - 2012

N2 - We have modeled the atmospheric impact of a major solar energetic particle event similar in intensity to what is thought of the Carrington Event of 1-2 September 1859. Ionization rates for the August 1972 solar proton event, which had an energy spectrum comparable to the Carrington Event, were scaled up in proportion to the fluence estimated for both events. We have assumed such an event to take place in the year 2020 in order to investigate the impact on the modern, near future atmosphere. Effects on atmospheric chemistry, temperature and dynamics were investigated using the 3-D Chemistry Climate Model SOCOL v2.0. We find significant responses of NOx, HOx, ozone, temperature and zonal wind. Ozone and NOx have in common an unusually strong and long-lived response to this solar proton event. The model suggests a 3-fold increase of NOx generated in the upper stratosphere lasting until the end of November, and an up to 10-fold increase in upper mesospheric HOx. Due to the NOx and HOx enhancements, ozone reduces by up to 60-80% in the mesosphere during the days after the event, and by up to 20-40% in the middle stratosphere lasting for several months after the event. Total ozone is reduced by up to 20 DU in the Northern Hemisphere and up to 10 DU in the Southern Hemisphere. Free tropospheric and surface air temperatures show a significant cooling of more than 3K and zonal winds change significantly by 3-5 m s(-1) in the UTLS region. In conclusion, a solar proton event, if it took place in the near future with an intensity similar to that ascribed to of the Carrington Event of 1859, must be expected to have a major impact on atmospheric composition throughout the middle atmosphere, resulting in significant and persistent decrease in total ozone.

AB - We have modeled the atmospheric impact of a major solar energetic particle event similar in intensity to what is thought of the Carrington Event of 1-2 September 1859. Ionization rates for the August 1972 solar proton event, which had an energy spectrum comparable to the Carrington Event, were scaled up in proportion to the fluence estimated for both events. We have assumed such an event to take place in the year 2020 in order to investigate the impact on the modern, near future atmosphere. Effects on atmospheric chemistry, temperature and dynamics were investigated using the 3-D Chemistry Climate Model SOCOL v2.0. We find significant responses of NOx, HOx, ozone, temperature and zonal wind. Ozone and NOx have in common an unusually strong and long-lived response to this solar proton event. The model suggests a 3-fold increase of NOx generated in the upper stratosphere lasting until the end of November, and an up to 10-fold increase in upper mesospheric HOx. Due to the NOx and HOx enhancements, ozone reduces by up to 60-80% in the mesosphere during the days after the event, and by up to 20-40% in the middle stratosphere lasting for several months after the event. Total ozone is reduced by up to 20 DU in the Northern Hemisphere and up to 10 DU in the Southern Hemisphere. Free tropospheric and surface air temperatures show a significant cooling of more than 3K and zonal winds change significantly by 3-5 m s(-1) in the UTLS region. In conclusion, a solar proton event, if it took place in the near future with an intensity similar to that ascribed to of the Carrington Event of 1859, must be expected to have a major impact on atmospheric composition throughout the middle atmosphere, resulting in significant and persistent decrease in total ozone.

KW - PARTICLE-PRECIPITATION EVENTS

KW - CLIMATE MODEL SOCOL

KW - MIDDLE ATMOSPHERE

KW - ION CHEMISTRY

KW - TRANSPORT

KW - NITROGEN

KW - IMPACT

U2 - 10.5194/acp-12-8679-2012

DO - 10.5194/acp-12-8679-2012

M3 - статья

VL - 12

SP - 8679

EP - 8686

JO - Atmospheric Chemistry and Physics

JF - Atmospheric Chemistry and Physics

SN - 1680-7316

IS - 18

ER -

ID: 108521176