DOI

We investigate the extent to which we can infer social ties between a pair of users in an online social network Twitter, based on their common activities defined by the number of common celebrity profiles they are following. In this work, we analyze the list of celebrities that a set of Twitter users are following in December 2013 to infer the social ties that existed between these users till July 2009. We use two probabilistic models given by Kossinets et al. [Science, 2006] and Crandall et al. [PNAS, 2010] for this purpose. The model of Kossinets et al. is meant to give an upper bound for the probability of friendship between a pair of users, whereas the model by Crandall et al. is supposed to give an almost accurate estimate of the same. We observe that the model of Kossinets et al. is able to give an upper bound whereas the model given by Crandall et al. is unable to give an almost accurate estimate for our dataset. However, the model by Crandall et al. is observed to provide a correct estimate of the probability of friendship between the users when we consider following a particular type of celebrity profile, e.g. CEO, Author etc., as the activity of a user.

Язык оригиналаанглийский
Название основной публикацииHT 2014 - Proceedings of the 25th ACM Conference on Hypertext and Social Media
ИздательAssociation for Computing Machinery
Страницы318-320
Число страниц3
ISBN (печатное издание)9781450329545
DOI
СостояниеОпубликовано - 1 янв 2014
Событие25th ACM Conference on Hypertext and Social Media, HT 2014 - Santiago, Чили
Продолжительность: 1 сен 20144 сен 2014

конференция

конференция25th ACM Conference on Hypertext and Social Media, HT 2014
Страна/TерриторияЧили
ГородSantiago
Период1/09/144/09/14

    Предметные области Scopus

  • Компьютерная графика и машинное проектирования
  • Человеко-машинное взаимодействие
  • Программный продукт

ID: 49849490