Standard

Induced representations of the infinite symmetric group and their spectral theory. / Vershik, A. M.; Tsilevich, N. V.

в: Doklady Mathematics, Том 75, № 1, 01.02.2007, стр. 1-4.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{6bc92d1b3ff14c5c8b9b231c028c52cc,
title = "Induced representations of the infinite symmetric group and their spectral theory",
abstract = "We formulate the main facts on the representations of the infinite symetric group induced from the identity representations of Young subgroups. In particular, we describe when these representations are irreducible or factor representations, and give examples of computing their spectral measures.",
author = "Vershik, {A. M.} and Tsilevich, {N. V.}",
year = "2007",
month = feb,
day = "1",
doi = "10.1134/S1064562407010012",
language = "English",
volume = "75",
pages = "1--4",
journal = "Doklady Mathematics",
issn = "1064-5624",
publisher = "МАИК {"}Наука/Интерпериодика{"}",
number = "1",

}

RIS

TY - JOUR

T1 - Induced representations of the infinite symmetric group and their spectral theory

AU - Vershik, A. M.

AU - Tsilevich, N. V.

PY - 2007/2/1

Y1 - 2007/2/1

N2 - We formulate the main facts on the representations of the infinite symetric group induced from the identity representations of Young subgroups. In particular, we describe when these representations are irreducible or factor representations, and give examples of computing their spectral measures.

AB - We formulate the main facts on the representations of the infinite symetric group induced from the identity representations of Young subgroups. In particular, we describe when these representations are irreducible or factor representations, and give examples of computing their spectral measures.

UR - http://www.scopus.com/inward/record.url?scp=33947426539&partnerID=8YFLogxK

U2 - 10.1134/S1064562407010012

DO - 10.1134/S1064562407010012

M3 - Article

AN - SCOPUS:33947426539

VL - 75

SP - 1

EP - 4

JO - Doklady Mathematics

JF - Doklady Mathematics

SN - 1064-5624

IS - 1

ER -

ID: 49789845