Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We report one-step in situ laser-induced synthesis of the conductive copper microstructures doped with iron, zinc, nickel, and cobalt with highly developed surface area. It was observed that the presence of chlorides of the aforementioned metals in the solutions used in our experiments increases the deposition rate and the amount of copper in the resulting deposits; it also leads to the deposit miniaturization. The laser deposition from solutions containing cobalt (II) chloride of concentration more than 0.003 M results in fabrication of copper microelectrode with better electrochemical properties than those deposited from solutions containing chlorides of other metals of the same concentration. Moreover, copper microelectrode doped with cobalt has demonstrated good reproducibility and long-run stability as well as sensitivity and selectivity towards determination of hydrogen peroxide (limit of detection-0.2 μM) and D-glucose (limit of detection-2.2 μM). Thus, in this article we have shown the opportunity to manufacture two-phase microcomposite materials with good electrical conductivity and electrochemical characteristics using in situ laser-induced metal deposition technique. These materials might be quite useful in development of new perspective sensors for non-enzymatic detection of such important analytes as hydrogen peroxide and glucose.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 138-146 |
Число страниц | 9 |
Журнал | Analytica Chimica Acta |
Том | 1044 |
DOI | |
Состояние | Опубликовано - 31 дек 2018 |
ID: 35465154