Silk fibroin (SF)-based materials attract significant interest because of their biocompability and great diversity of possible morphologies. One of the approaches to obtain SF materials is the use of an air–water or oil–water interface as a template for protein self-assembly. Surfactants can change the surface properties of adsorbed SF layers by promoting or preventing the formation of SF fiber networks. This study focuses on the influence of two typical ionic surfactants, cationic cetyltrimethylammonium bromide (CTAB) and anionic sodium dodecyl sulfate (SDS), on the dynamic properties of SF layers adsorbed at the air–water interface. The dynamic surface elasticity, surface tension, ellipsometric angle Δ, and the film thickness were measured as a function of the surface age and surfactant concentration. The morphology of the layers was evaluated by atomic force microscopy (AFM). For the adsorption layers of globular proteins, the main effect of the surfactants consists in the protein unfolding at high concentrations and in a decrease in the electrostatic adsorption barrier. In the case of SF layers, CTAB and SDS strongly influence the protein aggregation at the air–water interface. Regardless of the sign of the surfactant charge, its addition to SF solutions results in a decrease in the surface elasticity and the destruction of the ordered structure of protein fibers at concentrations higher than 1 × 10−4 M. With the further increase in the surfactant concentration, the thread-like aggregates disappear, the packing of thin fibers becomes less tight, a uniform layer disintegrates into separate islands, and finally, the protein is displaced from the interface.