Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Hyperbolicity and Solvability for Linear Systems on Time Scales. / Крыжевич, Сергей Геннадьевич.
Differential and Difference Equations with Applications. ред. / Peter Kloeden; Sandra Pinelas; Tomas Caraballo; John R. Graef. Том 230 Cham : Springer Nature, 2018. стр. 221-232 (Springer Proceedings in Mathematics and Statistics; Том 230).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Hyperbolicity and Solvability for Linear Systems on Time Scales
AU - Крыжевич, Сергей Геннадьевич
N1 - Funding Information: The author was partially supported by RFBR grant 18-01-00230-a.
PY - 2018/5/8
Y1 - 2018/5/8
N2 - We believe that the difference between time scale systems and ordinary differential equations is not as big as people use to think. We consider linear operators that correspond to linear dynamic systems on time scales. We study solvability of these operators in L ∞. For ordinary differential equations such solvability is equivalent to hyperbolicity of the considered linear system. Using this approach and transformations of the time variable, we spread the concept of hyperbolicity to time scale dynamics. We provide some analogs of well-known facts of Hyperbolic Systems Theory, e.g. the Lyapunov–Perron theorem on stable manifold.
AB - We believe that the difference between time scale systems and ordinary differential equations is not as big as people use to think. We consider linear operators that correspond to linear dynamic systems on time scales. We study solvability of these operators in L ∞. For ordinary differential equations such solvability is equivalent to hyperbolicity of the considered linear system. Using this approach and transformations of the time variable, we spread the concept of hyperbolicity to time scale dynamics. We provide some analogs of well-known facts of Hyperbolic Systems Theory, e.g. the Lyapunov–Perron theorem on stable manifold.
KW - Exponential dichotomy
KW - Hyperbolicity
KW - Solvability
KW - Stable manifolds
KW - Time scale
UR - http://www.scopus.com/inward/record.url?scp=85047184106&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-75647-9_18
DO - 10.1007/978-3-319-75647-9_18
M3 - Conference contribution
SN - 978-3-319-75646-2
VL - 230
T3 - Springer Proceedings in Mathematics and Statistics
SP - 221
EP - 232
BT - Differential and Difference Equations with Applications
A2 - Kloeden, Peter
A2 - Pinelas, Sandra
A2 - Caraballo, Tomas
A2 - Graef, John R.
PB - Springer Nature
CY - Cham
ER -
ID: 26329422