DOI

In this chapter, a hyperbolic system of second-order differential equations (formula presented) with Dirichlet or Neumann boundary conditions is considered, at all times t∈ ℝ, in a wedge or a bounded domain with conical points on the boundary. The operator P(Dx) is assumed to be formally self-adjoint and strongly elliptic. We study the asymptotics of solutions near an edge or conical points and deduce formulas for the coefficients in the asymptotics. The reasoning follows the scheme of Chap. 2 while the details of proofs become more complicated. In Sect. 3.1 we consider the Dirichlet problem in a wedge while Sect. 3.2 is devoted to the study of the Neumann problem in a cone and in a domain with a conical point.

Язык оригиналаанглийский
Название основной публикацииAsymptotic Theory of Dynamic Boundary Value Problems in Irregular Domains
ИздательSpringer Nature
Страницы75-127
Число страниц53
DOI
СостояниеОпубликовано - 2021

Серия публикаций

НазваниеOperator Theory: Advances and Applications
Том284
ISSN (печатное издание)0255-0156
ISSN (электронное издание)2296-4878

    Предметные области Scopus

  • Анализ

ID: 77222277