DOI

We show that the real-valued function Sα on the moduli space M0,n of pointed rational curves, defined as the critical value of the Liouville action functional on a hyperbolic 2-sphere with n ≥ 3 conical singularities of arbitrary orders α = {α1,..., αn}, generates accessory parameters of the associated Fuchsian differential equation as their common antiderivative. We introduce a family of Kähler metrics on M0,n parameterized by the set of orders a, explicitly relate accessory parameters to these metrics, and prove that the functions Sα are their Kähler potentials.
Язык оригиналаанглийский
Страницы (с-по)1857-1867
Число страниц11
ЖурналTransactions of the American Mathematical Society
Том355
Номер выпуска5
DOI
СостояниеОпубликовано - 1 мая 2003

ID: 127186885