DOI

The divergent at ω = 0 quantum correction to conductivity δ σ2 (ω) of the leading order in (kF l)- 1 has been calculated neglecting Cooperon-type contributions suppressed by moderate or strong magnetic field. In the so-called diffusion approximation this quantity is equal to zero up to the second order in (kF l)- 1. More subtle treatment of the problem shows that δ σ2 (ω) is non-zero due to ballistic contributions neglected previously. Knowledge of δ σ2 (ω) allows to estimate value of the so-called unitary localization length as ξu ≈ l exp (1.6 g2) where Drude conductivity is given by σ0 = ge2 / h. This estimation underpins the statement of the linear growth of σxx peaks with Landau level number n in the integer quantum Hall effect regime [1] (Greshnov and Zegrya, 2008; Greshnov et al., 2008) at least for n ≤ 2 and calls Pruisken-Khmelnitskii hypothesis of universality [2] (Levine et al., 1983; Khmelnitskii, 1983) in question.

Язык оригиналаанглийский
Страницы (с-по)1062-1065
Число страниц4
ЖурналPhysica E: Low-Dimensional Systems and Nanostructures
Том42
Номер выпуска4
DOI
СостояниеОпубликовано - 1 фев 2010

    Предметные области Scopus

  • Электроника, оптика и магнитные материалы
  • Атомная и молекулярная физика и оптика
  • Физика конденсатов

ID: 49950531