Standard

How bad can a banach space with approximation property be? II. / Reinov, O. I.

в: Journal of Mathematical Sciences , Том 112, № 1, 2002, стр. 4065-4072.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Reinov, OI 2002, 'How bad can a banach space with approximation property be? II', Journal of Mathematical Sciences , Том. 112, № 1, стр. 4065-4072. https://doi.org/10.1023/A:1020010209714

APA

Vancouver

Author

Reinov, O. I. / How bad can a banach space with approximation property be? II. в: Journal of Mathematical Sciences . 2002 ; Том 112, № 1. стр. 4065-4072.

BibTeX

@article{764d8fc91068486ab1bb7dd577b36155,
title = "How bad can a banach space with approximation property be? II",
abstract = "This paper is a continuation of [1] where the question {"}How bad can a Banach space with approximation property bel{"} is discussed. Some results of [ 1 ] and [2] are generalized.",
author = "Reinov, {O. I.}",
note = "Funding Information: This work was partially supported by the Federal Program “Integratsiya” (grant No. 326.53), Program “Podderzhka Nauchnyh Shkol” (grant No. 00-15-96-022), and Sweden Royal Academy of Sciences. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.",
year = "2002",
doi = "10.1023/A:1020010209714",
language = "English",
volume = "112",
pages = "4065--4072",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - How bad can a banach space with approximation property be? II

AU - Reinov, O. I.

N1 - Funding Information: This work was partially supported by the Federal Program “Integratsiya” (grant No. 326.53), Program “Podderzhka Nauchnyh Shkol” (grant No. 00-15-96-022), and Sweden Royal Academy of Sciences. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.

PY - 2002

Y1 - 2002

N2 - This paper is a continuation of [1] where the question "How bad can a Banach space with approximation property bel" is discussed. Some results of [ 1 ] and [2] are generalized.

AB - This paper is a continuation of [1] where the question "How bad can a Banach space with approximation property bel" is discussed. Some results of [ 1 ] and [2] are generalized.

UR - http://www.scopus.com/inward/record.url?scp=52649143330&partnerID=8YFLogxK

U2 - 10.1023/A:1020010209714

DO - 10.1023/A:1020010209714

M3 - Article

AN - SCOPUS:52649143330

VL - 112

SP - 4065

EP - 4072

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 1

ER -

ID: 73500017